The Magnetic Field #
i. Overview #
In 3-spatial dimensions from the electromagnetic potential we can define the magnetic field
\vec B as (∇ × (A.vectorPotential t)) x.
In this module we define this magnetic field from the electromagnetic potential.
In general dimensions we define the magnetic field matrix from the spatial components of the field strength matrix. This is an antisymmetric matrix.
ii. Key results #
ElectromagneticPotential.magneticField: The magnetic field from the electromagnetic potential in 3 spatial dimensions.ElectromagneticPotential.magneticFieldMatrix: The magnetic field matrix from the electromagnetic potential in general spatial dimensions.ElectromagneticPotential.time_deriv_magneticFieldMatrix: The time derivative of the magnetic field matrix in terms of the vector potential. (Aka Faraday's law).
iii. Table of contents #
- A. The magnetic field
- A.1. Relation between the magnetic field and the field strength matrix
- A.2. Divergence of the magnetic field
- B. The field strength matrix in terms of the electric and magnetic fields
- C. Magnetic field matrix
- C.1. Antisymmetry of the magnetic field matrix
- C.2. Magnetic field in terms of the magnetic field matrix
- C.3. Magnetic field matrix in terms of vector potentials
- C.4. Smoothness of the magnetic field matrix
- C.5. Differentiablity of the magnetic field matrix
- C.6. Spatial derivative of the magnetic field matrix
- C.7. Temporal derivative of the magnetic field matrix
- C.8.
curlof the magnetic field matrix
iv. References #
A. The magnetic field #
noncomputable def
Electromagnetism.ElectromagneticPotential.magneticField
(c : SpeedOfLight := 1)
(A : ElectromagneticPotential)
:
The magnetic field from the electromagnetic potential.
Equations
Instances For
theorem
Electromagnetism.ElectromagneticPotential.magneticField_eq
{c : SpeedOfLight}
(A : ElectromagneticPotential)
:
A.1. Relation between the magnetic field and the field strength matrix #
theorem
Electromagnetism.ElectromagneticPotential.magneticField_fst_eq_fieldStrengthMatrix
{c : SpeedOfLight}
(A : ElectromagneticPotential)
(t : Time)
(x : Space)
(hA : Differentiable ℝ A)
:
magneticField c A t x 0 = -(A.fieldStrengthMatrix ((SpaceTime.toTimeAndSpace c).symm (t, x))) (Sum.inr 1, Sum.inr 2)
theorem
Electromagnetism.ElectromagneticPotential.magneticField_snd_eq_fieldStrengthMatrix
{c : SpeedOfLight}
(A : ElectromagneticPotential)
(t : Time)
(x : Space)
(hA : Differentiable ℝ A)
:
magneticField c A t x 1 = (A.fieldStrengthMatrix ((SpaceTime.toTimeAndSpace c).symm (t, x))) (Sum.inr 0, Sum.inr 2)
theorem
Electromagnetism.ElectromagneticPotential.magneticField_thd_eq_fieldStrengthMatrix
{c : SpeedOfLight}
(A : ElectromagneticPotential)
(t : Time)
(x : Space)
(hA : Differentiable ℝ A)
:
magneticField c A t x 2 = -(A.fieldStrengthMatrix ((SpaceTime.toTimeAndSpace c).symm (t, x))) (Sum.inr 0, Sum.inr 1)
A.2. Divergence of the magnetic field #
theorem
Electromagnetism.ElectromagneticPotential.magneticField_div_eq_zero
{c : SpeedOfLight}
(A : ElectromagneticPotential)
(hA : ContDiff ℝ 2 A)
(t : Time)
:
B. The field strength matrix in terms of the electric and magnetic fields #
theorem
Electromagnetism.ElectromagneticPotential.fieldStrengthMatrix_eq_electric_magnetic
{c : SpeedOfLight}
(A : ElectromagneticPotential)
(t : Time)
(x : Space)
(hA : Differentiable ℝ A)
(μ ν : Fin 1 ⊕ Fin 3)
:
(A.fieldStrengthMatrix ((SpaceTime.toTimeAndSpace c).symm (t, x))) (μ, ν) = match μ, ν with
| Sum.inl 0, Sum.inl 0 => 0
| Sum.inl 0, Sum.inr i => -electricField c A t x i / c.val
| Sum.inr i, Sum.inl 0 => electricField c A t x i / c.val
| Sum.inr i, Sum.inr j =>
match i, j with
| 0, 0 => 0
| 0, 1 => -magneticField c A t x 2
| 0, 2 => magneticField c A t x 1
| 1, 0 => magneticField c A t x 2
| 1, 1 => 0
| 1, 2 => -magneticField c A t x 0
| 2, 0 => -magneticField c A t x 1
| 2, 1 => magneticField c A t x 0
| 2, 2 => 0
theorem
Electromagnetism.ElectromagneticPotential.fieldStrengthMatrix_eq_electric_magnetic_of_spaceTime
(c : SpeedOfLight)
(A : ElectromagneticPotential)
(x : SpaceTime)
(hA : Differentiable ℝ A)
(μ ν : Fin 1 ⊕ Fin 3)
:
have tx := (SpaceTime.toTimeAndSpace c) x;
(A.fieldStrengthMatrix x) (μ, ν) = match μ, ν with
| Sum.inl 0, Sum.inl 0 => 0
| Sum.inl 0, Sum.inr i => -electricField c A tx.1 tx.2 i / c.val
| Sum.inr i, Sum.inl 0 => electricField c A tx.1 tx.2 i / c.val
| Sum.inr i, Sum.inr j =>
match i, j with
| 0, 0 => 0
| 0, 1 => -magneticField c A tx.1 tx.2 2
| 0, 2 => magneticField c A tx.1 tx.2 1
| 1, 0 => magneticField c A tx.1 tx.2 2
| 1, 1 => 0
| 1, 2 => -magneticField c A tx.1 tx.2 0
| 2, 0 => -magneticField c A tx.1 tx.2 1
| 2, 1 => magneticField c A tx.1 tx.2 0
| 2, 2 => 0
C. Magnetic field matrix #
noncomputable def
Electromagnetism.ElectromagneticPotential.magneticFieldMatrix
{d : ℕ}
(c : SpeedOfLight := 1)
(A : ElectromagneticPotential d)
:
The matrix corresponding to the magnetic field in general dimensions.
In 3 space-dimensions this reduces to a vector.
Equations
- Electromagnetism.ElectromagneticPotential.magneticFieldMatrix c A = (SpaceTime.timeSlice c) fun (x : SpaceTime d) (ij : Fin d × Fin d) => (A.fieldStrengthMatrix x) (Sum.inr ij.1, Sum.inr ij.2)
Instances For
theorem
Electromagnetism.ElectromagneticPotential.magneticFieldMatrix_eq
{d : ℕ}
{c : SpeedOfLight}
(A : ElectromagneticPotential d)
:
theorem
Electromagnetism.ElectromagneticPotential.fieldStrengthMatrix_inr_inr_eq_magneticFieldMatrix
{d : ℕ}
{c : SpeedOfLight}
(A : ElectromagneticPotential d)
(x : SpaceTime d)
(i j : Fin d)
:
(A.fieldStrengthMatrix x) (Sum.inr i, Sum.inr j) = magneticFieldMatrix c A ((SpaceTime.time c) x) (SpaceTime.space x) (i, j)
C.1. Antisymmetry of the magnetic field matrix #
theorem
Electromagnetism.ElectromagneticPotential.magneticFieldMatrix_antisymm
{d : ℕ}
{c : SpeedOfLight}
(A : ElectromagneticPotential d)
(t : Time)
(x : Space d)
(i j : Fin d)
:
@[simp]
theorem
Electromagnetism.ElectromagneticPotential.magneticFieldMatrix_diag_eq_zero
{d : ℕ}
{c : SpeedOfLight}
(A : ElectromagneticPotential d)
(t : Time)
(x : Space d)
(i : Fin d)
:
C.2. Magnetic field in terms of the magnetic field matrix #
theorem
Electromagnetism.ElectromagneticPotential.magneticField_eq_magneticFieldMatrix
{c : SpeedOfLight}
(A : ElectromagneticPotential)
(hA : Differentiable ℝ A)
:
magneticField c A = fun (t : Time) (x : Space) (i : Fin 3) =>
match i with
| 0 => -magneticFieldMatrix c A t x (1, 2)
| 1 => magneticFieldMatrix c A t x (0, 2)
| 2 => -magneticFieldMatrix c A t x (0, 1)
theorem
Electromagnetism.ElectromagneticPotential.magneticField_curl_eq_magneticFieldMatrix
{x : Space}
{i : Fin 3}
{c : SpeedOfLight}
(A : ElectromagneticPotential)
(hA : ContDiff ℝ 2 A)
(t : Time)
:
Space.curl (magneticField c A t) x i = ∑ j : Fin 3, Space.deriv j (fun (x : Space) => magneticFieldMatrix c A t x (j, i)) x
C.3. Magnetic field matrix in terms of vector potentials #
theorem
Electromagnetism.ElectromagneticPotential.magneticFieldMatrix_eq_vectorPotential
{d : ℕ}
{c : SpeedOfLight}
(A : ElectromagneticPotential d)
(hA : Differentiable ℝ A)
(t : Time)
(x : Space d)
(i j : Fin d)
:
magneticFieldMatrix c A t x (i, j) = Space.deriv j (fun (x : Space d) => vectorPotential c A t x i) x - Space.deriv i (fun (x : Space d) => vectorPotential c A t x j) x
C.4. Smoothness of the magnetic field matrix #
theorem
Electromagnetism.ElectromagneticPotential.magneticFieldMatrix_contDiff
{d : ℕ}
{n : WithTop ℕ∞}
{c : SpeedOfLight}
(A : ElectromagneticPotential d)
(hA : ContDiff ℝ (n + 1) A)
(ij : Fin d × Fin d)
:
theorem
Electromagnetism.ElectromagneticPotential.magneticFieldMatrix_space_contDiff
{d : ℕ}
{n : WithTop ℕ∞}
{c : SpeedOfLight}
(A : ElectromagneticPotential d)
(hA : ContDiff ℝ (n + 1) A)
(t : Time)
(ij : Fin d × Fin d)
:
ContDiff ℝ n fun (x : Space d) => magneticFieldMatrix c A t x ij
theorem
Electromagnetism.ElectromagneticPotential.magneticFieldMatrix_time_contDiff
{d : ℕ}
{n : WithTop ℕ∞}
{c : SpeedOfLight}
(A : ElectromagneticPotential d)
(hA : ContDiff ℝ (n + 1) A)
(x : Space d)
(ij : Fin d × Fin d)
:
ContDiff ℝ n fun (t : Time) => magneticFieldMatrix c A t x ij
C.5. Differentiablity of the magnetic field matrix #
theorem
Electromagnetism.ElectromagneticPotential.magneticFieldMatrix_differentiable
{d : ℕ}
{c : SpeedOfLight}
(A : ElectromagneticPotential d)
(hA : ContDiff ℝ 2 A)
(ij : Fin d × Fin d)
:
Differentiable ℝ ↿fun (t : Time) (x : Space d) => magneticFieldMatrix c A t x ij
theorem
Electromagnetism.ElectromagneticPotential.magneticFieldMatrix_differentiable_space
{d : ℕ}
{c : SpeedOfLight}
(A : ElectromagneticPotential d)
(hA : ContDiff ℝ 2 A)
(t : Time)
(ij : Fin d × Fin d)
:
Differentiable ℝ fun (x : Space d) => magneticFieldMatrix c A t x ij
theorem
Electromagnetism.ElectromagneticPotential.magneticFieldMatrix_differentiable_time
{d : ℕ}
{c : SpeedOfLight}
(A : ElectromagneticPotential d)
(hA : ContDiff ℝ 2 A)
(x : Space d)
(ij : Fin d × Fin d)
:
Differentiable ℝ fun (t : Time) => magneticFieldMatrix c A t x ij
C.6. Spatial derivative of the magnetic field matrix #
theorem
Electromagnetism.ElectromagneticPotential.magneticFieldMatrix_space_deriv_eq
{d : ℕ}
{c : SpeedOfLight}
(A : ElectromagneticPotential d)
(hA : ContDiff ℝ 2 A)
(t : Time)
(x : Space d)
(i j k : Fin d)
:
Space.deriv k (fun (x : Space d) => magneticFieldMatrix c A t x (i, j)) x = Space.deriv i (fun (x : Space d) => magneticFieldMatrix c A t x (k, j)) x - Space.deriv j (fun (x : Space d) => magneticFieldMatrix c A t x (k, i)) x
C.7. Temporal derivative of the magnetic field matrix #
theorem
Electromagnetism.ElectromagneticPotential.time_deriv_magneticFieldMatrix
{d : ℕ}
{c : SpeedOfLight}
(A : ElectromagneticPotential d)
(hA : ContDiff ℝ 2 A)
(t : Time)
(x : Space d)
(i j : Fin d)
:
Time.deriv (fun (x_1 : Time) => magneticFieldMatrix c A x_1 x (i, j)) t = Space.deriv i (fun (x : Space d) => electricField c A t x j) x - Space.deriv j (fun (x : Space d) => electricField c A t x i) x
theorem
Electromagnetism.ElectromagneticPotential.time_deriv_time_deriv_magneticFieldMatrix
{d : ℕ}
{c : SpeedOfLight}
(A : ElectromagneticPotential d)
(hA : ContDiff ℝ 3 A)
(t : Time)
(x : Space d)
(i j : Fin d)
:
Time.deriv (Time.deriv fun (x_1 : Time) => magneticFieldMatrix c A x_1 x (i, j)) t = Space.deriv i (fun (x : Space d) => Time.deriv (fun (t : Time) => electricField c A t x) t j) x - Space.deriv j (fun (x : Space d) => Time.deriv (fun (t : Time) => electricField c A t x) t i) x
C.8. curl of the magnetic field matrix #
theorem
Electromagnetism.ElectromagneticPotential.curl_magneticFieldMatrix_eq_electricField_fieldStrengthMatrix
{d : ℕ}
{c : SpeedOfLight}
(A : ElectromagneticPotential d)
(hA : ContDiff ℝ 2 A)
(t : Time)
(x : Space d)
(i : Fin d)
:
∑ j : Fin d, Space.deriv j (fun (x : Space d) => magneticFieldMatrix c A t x (j, i)) x = 1 / c.val ^ 2 * Time.deriv (fun (t : Time) => electricField c A t x) t i + ∑ μ : Fin 1 ⊕ Fin d,
SpaceTime.deriv μ (fun (x : SpaceTime d) => (A.fieldStrengthMatrix x) (μ, Sum.inr i))
((SpaceTime.toTimeAndSpace c).symm (t, x))