PhysLean Documentation

PhysLean.Electromagnetism.Kinematics.MagneticField

The Magnetic Field #

i. Overview #

In 3-spatial dimensions from the electromagnetic potential we can define the magnetic field \vec B as (∇ × (A.vectorPotential t)) x. In this module we define this magnetic field from the electromagnetic potential.

In general dimensions we define the magnetic field matrix from the spatial components of the field strength matrix. This is an antisymmetric matrix.

ii. Key results #

iii. Table of contents #

iv. References #

A. The magnetic field #

A.1. Relation between the magnetic field and the field strength matrix #

A.2. Divergence of the magnetic field #

B. The field strength matrix in terms of the electric and magnetic fields #

theorem Electromagnetism.ElectromagneticPotential.fieldStrengthMatrix_eq_electric_magnetic {c : SpeedOfLight} (A : ElectromagneticPotential) (t : Time) (x : Space) (hA : Differentiable A) (μ ν : Fin 1 Fin 3) :
(A.fieldStrengthMatrix ((SpaceTime.toTimeAndSpace c).symm (t, x))) (μ, ν) = match μ, ν with | Sum.inl 0, Sum.inl 0 => 0 | Sum.inl 0, Sum.inr i => -electricField c A t x i / c.val | Sum.inr i, Sum.inl 0 => electricField c A t x i / c.val | Sum.inr i, Sum.inr j => match i, j with | 0, 0 => 0 | 0, 1 => -magneticField c A t x 2 | 0, 2 => magneticField c A t x 1 | 1, 0 => magneticField c A t x 2 | 1, 1 => 0 | 1, 2 => -magneticField c A t x 0 | 2, 0 => -magneticField c A t x 1 | 2, 1 => magneticField c A t x 0 | 2, 2 => 0
theorem Electromagnetism.ElectromagneticPotential.fieldStrengthMatrix_eq_electric_magnetic_of_spaceTime (c : SpeedOfLight) (A : ElectromagneticPotential) (x : SpaceTime) (hA : Differentiable A) (μ ν : Fin 1 Fin 3) :
have tx := (SpaceTime.toTimeAndSpace c) x; (A.fieldStrengthMatrix x) (μ, ν) = match μ, ν with | Sum.inl 0, Sum.inl 0 => 0 | Sum.inl 0, Sum.inr i => -electricField c A tx.1 tx.2 i / c.val | Sum.inr i, Sum.inl 0 => electricField c A tx.1 tx.2 i / c.val | Sum.inr i, Sum.inr j => match i, j with | 0, 0 => 0 | 0, 1 => -magneticField c A tx.1 tx.2 2 | 0, 2 => magneticField c A tx.1 tx.2 1 | 1, 0 => magneticField c A tx.1 tx.2 2 | 1, 1 => 0 | 1, 2 => -magneticField c A tx.1 tx.2 0 | 2, 0 => -magneticField c A tx.1 tx.2 1 | 2, 1 => magneticField c A tx.1 tx.2 0 | 2, 2 => 0

C. Magnetic field matrix #

The matrix corresponding to the magnetic field in general dimensions. In 3 space-dimensions this reduces to a vector.

Equations
Instances For

    C.1. Antisymmetry of the magnetic field matrix #

    C.2. Magnetic field in terms of the magnetic field matrix #

    C.3. Magnetic field matrix in terms of vector potentials #

    C.4. Smoothness of the magnetic field matrix #

    C.5. Differentiablity of the magnetic field matrix #

    C.6. Spatial derivative of the magnetic field matrix #

    theorem Electromagnetism.ElectromagneticPotential.magneticFieldMatrix_space_deriv_eq {d : } {c : SpeedOfLight} (A : ElectromagneticPotential d) (hA : ContDiff 2 A) (t : Time) (x : Space d) (i j k : Fin d) :
    Space.deriv k (fun (x : Space d) => magneticFieldMatrix c A t x (i, j)) x = Space.deriv i (fun (x : Space d) => magneticFieldMatrix c A t x (k, j)) x - Space.deriv j (fun (x : Space d) => magneticFieldMatrix c A t x (k, i)) x

    C.7. Temporal derivative of the magnetic field matrix #

    theorem Electromagnetism.ElectromagneticPotential.time_deriv_magneticFieldMatrix {d : } {c : SpeedOfLight} (A : ElectromagneticPotential d) (hA : ContDiff 2 A) (t : Time) (x : Space d) (i j : Fin d) :
    Time.deriv (fun (x_1 : Time) => magneticFieldMatrix c A x_1 x (i, j)) t = Space.deriv i (fun (x : Space d) => electricField c A t x j) x - Space.deriv j (fun (x : Space d) => electricField c A t x i) x
    theorem Electromagnetism.ElectromagneticPotential.time_deriv_time_deriv_magneticFieldMatrix {d : } {c : SpeedOfLight} (A : ElectromagneticPotential d) (hA : ContDiff 3 A) (t : Time) (x : Space d) (i j : Fin d) :
    Time.deriv (Time.deriv fun (x_1 : Time) => magneticFieldMatrix c A x_1 x (i, j)) t = Space.deriv i (fun (x : Space d) => Time.deriv (fun (t : Time) => electricField c A t x) t j) x - Space.deriv j (fun (x : Space d) => Time.deriv (fun (t : Time) => electricField c A t x) t i) x

    C.8. curl of the magnetic field matrix #