PhysLean Documentation

PhysLean.SpaceAndTime.Space.Derivatives.Div

Divergence on Space #

i. Overview #

In this module we define the divergence operator on functions and distributions from Space d to EuclideanSpace ℝ (Fin d), and prove various basic properties about it.

ii. Key results #

iii. Table of contents #

iv. References #

A. The divergence on functions #

noncomputable def Space.div {d : } (f : Space dEuclideanSpace (Fin d)) :
Space d

The vector calculus operator div.

Equations
Instances For

    The vector calculus operator div.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      A.1. The divergence on the zero function #

      @[simp]
      theorem Space.div_zero {d : } :
      div 0 = 0

      A.2. The divergence on a constant function #

      @[simp]
      theorem Space.div_const {d : } {v : EuclideanSpace (Fin d)} :
      (div fun (x : Space d) => v) = 0

      A.3. The divergence distributes over addition #

      theorem Space.div_add {d : } (f1 f2 : Space dEuclideanSpace (Fin d)) (hf1 : Differentiable f1) (hf2 : Differentiable f2) :
      div (f1 + f2) = div f1 + div f2

      A.4. The divergence distributes over scalar multiplication #

      theorem Space.div_smul {d : } (f : Space dEuclideanSpace (Fin d)) (k : ) (hf : Differentiable f) :
      div (k f) = k div f

      A.5. The divergence of a linear map is a linear map #

      theorem Space.div_linear_map {W : Type u_1} [NormedAddCommGroup W] [NormedSpace W] (f : WSpaceEuclideanSpace (Fin 3)) (hf : ∀ (w : W), Differentiable (f w)) (hf' : IsLinearMap f) :
      IsLinearMap fun (w : W) => div (f w)

      B. Divergence of distributions #

      The divergence of a distribution (Space d) →d[ℝ] (EuclideanSpace ℝ (Fin d)) as a distribution (Space d) →d[ℝ] ℝ.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        B.1. Basic equalities #

        theorem Space.distDiv_apply_eq_sum_distDeriv {d : } (f : (Space d)→d[] EuclideanSpace (Fin d)) (η : SchwartzMap (Space d) ) :
        (distDiv f) η = i : Fin d, ((distDeriv i) f) η i

        B.2. Divergence on distributions from bounded functions #

        theorem Space.distDiv_ofFunction {dm1 : } {f : Space dm1.succEuclideanSpace (Fin dm1.succ)} {hf : Distribution.IsDistBounded f} {hae : MeasureTheory.AEStronglyMeasurable (fun (x : Space dm1.succ) => f x) MeasureTheory.volume} (η : SchwartzMap (EuclideanSpace (Fin dm1.succ)) ) :
        (distDiv (Distribution.ofFunction f hf hae)) η = - (x : Space dm1.succ), inner (f x) (grad (⇑η) x)

        The divergence of a distribution from a bounded function.