Divergence on Space #
i. Overview #
In this module we define the divergence operator on functions and
distributions from Space d to EuclideanSpace ℝ (Fin d), and prove various basic
properties about it.
ii. Key results #
div: The divergence operator on functions fromSpace dtoEuclideanSpace ℝ (Fin d).distDiv: The divergence operator on distributions fromSpace dtoEuclideanSpace ℝ (Fin d).distDiv_ofFunction: The divergence of a distribution from a bounded function.
iii. Table of contents #
- A. The divergence on functions
- A.1. The divergence on the zero function
- A.2. The divergence on a constant function
- A.3. The divergence distributes over addition
- A.4. The divergence distributes over scalar multiplication
- A.5. The divergence of a linear map is a linear map
- B. Divergence of distributions
- B.1. Basic equalities
- B.2. Divergence on distributions from bounded functions
iv. References #
A. The divergence on functions #
The vector calculus operator div.
Equations
- One or more equations did not get rendered due to their size.
Instances For
A.1. The divergence on the zero function #
A.2. The divergence on a constant function #
@[simp]
A.3. The divergence distributes over addition #
theorem
Space.div_add
{d : ℕ}
(f1 f2 : Space d → EuclideanSpace ℝ (Fin d))
(hf1 : Differentiable ℝ f1)
(hf2 : Differentiable ℝ f2)
:
A.4. The divergence distributes over scalar multiplication #
theorem
Space.div_smul
{d : ℕ}
(f : Space d → EuclideanSpace ℝ (Fin d))
(k : ℝ)
(hf : Differentiable ℝ f)
:
A.5. The divergence of a linear map is a linear map #
theorem
Space.div_linear_map
{W : Type u_1}
[NormedAddCommGroup W]
[NormedSpace ℝ W]
(f : W → Space → EuclideanSpace ℝ (Fin 3))
(hf : ∀ (w : W), Differentiable ℝ (f w))
(hf' : IsLinearMap ℝ f)
:
IsLinearMap ℝ fun (w : W) => div (f w)
B. Divergence of distributions #
The divergence of a distribution (Space d) →d[ℝ] (EuclideanSpace ℝ (Fin d)) as a distribution
(Space d) →d[ℝ] ℝ.
Equations
- One or more equations did not get rendered due to their size.
Instances For
B.1. Basic equalities #
theorem
Space.distDiv_apply_eq_sum_fderivD
{d : ℕ}
(f : (Space d)→d[ℝ] EuclideanSpace ℝ (Fin d))
(η : SchwartzMap (Space d) ℝ)
:
B.2. Divergence on distributions from bounded functions #
theorem
Space.distDiv_ofFunction
{dm1 : ℕ}
{f : Space dm1.succ → EuclideanSpace ℝ (Fin dm1.succ)}
{hf : Distribution.IsDistBounded f}
{hae : MeasureTheory.AEStronglyMeasurable (fun (x : Space dm1.succ) => f x) MeasureTheory.volume}
(η : SchwartzMap (EuclideanSpace ℝ (Fin dm1.succ)) ℝ)
:
The divergence of a distribution from a bounded function.