PhysLean Documentation

PhysLean.SpaceAndTime.SpaceTime.Derivatives

Derivatives on SpaceTime #

i. Overview #

In this module we define and prove basic lemmas about derivatives of functions and distributions on SpaceTime d.

ii. Key results #

iii. Table of contents #

iv. References #

A. Derivatives of functions on SpaceTime d #

A.1. The definition of the derivative #

noncomputable def SpaceTime.deriv {M : Type} [AddCommGroup M] [Module M] [TopologicalSpace M] {d : } (μ : Fin 1 Fin d) (f : SpaceTime dM) :
SpaceTime dM

The derivative of a function SpaceTime d → ℝ along the μ coordinate.

Equations
Instances For

    The derivative of a function SpaceTime d → ℝ along the μ coordinate.

    Equations
    Instances For

      A.2. Basic equality lemmas #

      theorem SpaceTime.deriv_eq {M : Type} [AddCommGroup M] [Module M] [TopologicalSpace M] {d : } (μ : Fin 1 Fin d) (f : SpaceTime dM) (y : SpaceTime d) :
      theorem SpaceTime.deriv_apply_eq {d : } (μ ν : Fin 1 Fin d) (f : SpaceTime dLorentz.Vector d) (hf : Differentiable f) (y : SpaceTime d) :
      deriv μ f y ν = (fderiv (fun (x : SpaceTime d) => f x ν) y) (Lorentz.Vector.basis μ)
      @[simp]
      theorem SpaceTime.deriv_coord {d : } (μ ν : Fin 1 Fin d) :
      (deriv μ fun (x : SpaceTime d) => x ν) = if μ = ν then 1 else 0

      A.3. Derivative of the zero function #

      @[simp]
      theorem SpaceTime.deriv_zero {d : } (μ : Fin 1 Fin d) :
      (deriv μ fun (x : SpaceTime d) => 0) = 0

      A.4. The derivative of a function composed with a Lorentz transformation #

      theorem SpaceTime.deriv_comp_lorentz_action {M : Type} [NormedAddCommGroup M] [NormedSpace M] {d : } (μ : Fin 1 Fin d) (f : SpaceTime dM) (hf : Differentiable f) (Λ : (LorentzGroup d)) (x : SpaceTime d) :
      deriv μ (fun (x : SpaceTime d) => f (Λ x)) x = ν : Fin 1 Fin d, Λ ν μ deriv ν f (Λ x)

      A.5. Spacetime derivatives in terms of time and space derivatives #

      theorem SpaceTime.deriv_sum_inr {d : } {M : Type} [NormedAddCommGroup M] [NormedSpace M] (c : SpeedOfLight) (f : SpaceTime dM) (hf : Differentiable f) (x : SpaceTime d) (i : Fin d) :
      deriv (Sum.inr i) f x = Space.deriv i (fun (y : Space d) => f ((toTimeAndSpace c).symm (((toTimeAndSpace c) x).1, y))) ((toTimeAndSpace c) x).2
      theorem SpaceTime.deriv_sum_inl {d : } {M : Type} [NormedAddCommGroup M] [NormedSpace M] (c : SpeedOfLight) (f : SpaceTime dM) (hf : Differentiable f) (x : SpaceTime d) :
      deriv (Sum.inl 0) f x = (1 / c.val) Time.deriv (fun (t : Time) => f ((toTimeAndSpace c).symm (t, ((toTimeAndSpace c) x).2))) ((toTimeAndSpace c) x).1

      B. Derivatives of distributions #

      Given a distribution (function) f : Space d →d[ℝ] M the derivative of f in direction μ.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        B.1. Commutation of derivatives of distributions #

        theorem SpaceTime.distDeriv_commute {M : Type} {d : } [NormedAddCommGroup M] [NormedSpace M] (μ ν : Fin 1 Fin d) (f : (SpaceTime d)→d[] M) :
        (distDeriv μ) ((distDeriv ν) f) = (distDeriv ν) ((distDeriv μ) f)

        B.2. Lorentz group action on derivatives of distributions #

        We now show how the Lorentz group action on distributions interacts with derivatives.

        theorem SchwartzMap.sum_apply {α : Type} [NormedAddCommGroup α] [NormedSpace α] {ι : Type} [Fintype ι] (f : ιSchwartzMap α ) (x : α) :
        (∑ i : ι, f i) x = i : ι, (f i) x
        theorem SpaceTime.distDeriv_comp_lorentz_action {n d : } {c : Fin nrealLorentzTensor.Color} {M : Type} [NormedAddCommGroup M] [NormedSpace M] [(realLorentzTensor d).Tensorial c M] [T2Space M] {μ : Fin 1 Fin d} (Λ : (LorentzGroup d)) (f : (SpaceTime d)→d[] M) :
        (distDeriv μ) (Λ f) = ν : Fin 1 Fin d, Λ⁻¹ ν μ Λ (distDeriv ν) f