PhysLean Documentation

PhysLean.SpaceAndTime.Time.Derivatives

Time Derivatives #

i. Overview #

In this module we define and prove basic lemmas about derivatives of functions on Time.

ii. Key results #

iii. Table of contents #

iv. References #

A. The definition of the derivative #

noncomputable def Time.deriv {M : Type} [AddCommGroup M] [Module M] [TopologicalSpace M] (f : TimeM) :
TimeM

Given a function f : Time → M the derivative of f.

Equations
Instances For

    Given a function f : Time → M the derivative of f.

    Equations
    Instances For
      theorem Time.deriv_eq {M : Type} [AddCommGroup M] [Module M] [TopologicalSpace M] (f : TimeM) (t : Time) :
      deriv f t = (fderiv f t) 1

      B. Linearlity properties of the derivative #

      theorem Time.deriv_smul {d : } {t : Time} (f : TimeEuclideanSpace (Fin d)) (k : ) (hf : Differentiable f) :
      deriv (fun (t : Time) => k f t) t = k deriv (fun (t : Time) => f t) t
      theorem Time.deriv_neg {M : Type} {t : Time} [NormedAddCommGroup M] [NormedSpace M] (f : TimeM) :
      deriv (-f) t = -deriv f t

      C. Derivative of constant functions #

      @[simp]
      theorem Time.deriv_const {M : Type} {t : Time} [NormedAddCommGroup M] [NormedSpace M] (m : M) :
      deriv (fun (x : Time) => m) t = 0

      D. Smoothness properties of the derivative #

      E. Derivatives of components #

      theorem Time.deriv_euclid {n : } {μ : Fin n} {f : TimeEuclideanSpace (Fin n)} (hf : Differentiable f) (t : Time) :
      deriv (fun (t : Time) => f t μ) t = deriv (fun (t : Time) => f t) t μ
      theorem Time.deriv_lorentzVector {d : } {f : TimeLorentz.Vector d} (hf : Differentiable f) (t : Time) (i : Fin 1 Fin d) :
      deriv (fun (t : Time) => f t i) t = deriv (fun (t : Time) => f t) t i