Time Derivatives #
i. Overview #
In this module we define and prove basic lemmas about derivatives of functions on Time.
ii. Key results #
iii. Table of contents #
- A. The definition of the derivative
- B. Linearlity properties of the derivative
- C. Derivative of constant functions
- D. Smoothness properties of the derivative
- E. Derivatives of components
iv. References #
A. The definition of the derivative #
noncomputable def
Time.deriv
{M : Type}
[AddCommGroup M]
[Module ℝ M]
[TopologicalSpace M]
(f : Time → M)
:
Time → M
Given a function f : Time → M the derivative of f.
Equations
- Time.deriv f t = (fderiv ℝ f t) 1
Instances For
Given a function f : Time → M the derivative of f.
Equations
- Time.«term∂ₜ» = Lean.ParserDescr.node `Time.«term∂ₜ» 1024 (Lean.ParserDescr.symbol "∂ₜ")
Instances For
theorem
Time.deriv_eq
{M : Type}
[AddCommGroup M]
[Module ℝ M]
[TopologicalSpace M]
(f : Time → M)
(t : Time)
:
B. Linearlity properties of the derivative #
theorem
Time.deriv_neg
{M : Type}
{t : Time}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
(f : Time → M)
:
C. Derivative of constant functions #
@[simp]
D. Smoothness properties of the derivative #
theorem
Time.deriv_differentiable_of_contDiff
{M : Type}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
(f : Time → M)
(hf : ContDiff ℝ (↑⊤) f)
:
Differentiable ℝ (deriv f)
theorem
Time.deriv_contDiff_of_contDiff
{M : Type}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
(f : Time → M)
(hf : ContDiff ℝ (↑⊤) f)
: