PhysLean Documentation

PhysLean.SpaceAndTime.Space.Derivatives.Curl

Curl on Space #

i. Overview #

In this module we define the curl of functions and distributions on 3-dimensional space Space 3.

We also prove some basic vector-identities involving of the curl operator.

ii. Key results #

iii. Table of contents #

iv. References #

A. The curl on functions #

noncomputable def Space.curl (f : SpaceEuclideanSpace (Fin 3)) :

The vector calculus operator curl.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    The vector calculus operator curl.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      A.1. The curl on the zero function #

      @[simp]
      theorem Space.curl_zero :
      curl 0 = 0

      A.2. The curl on a constant function #

      @[simp]
      theorem Space.curl_const {v₃ : EuclideanSpace (Fin 3)} :
      (curl fun (x : Space) => v₃) = 0

      A.3. The curl distributes over addition #

      theorem Space.curl_add (f1 f2 : SpaceEuclideanSpace (Fin 3)) (hf1 : Differentiable f1) (hf2 : Differentiable f2) :
      curl (f1 + f2) = curl f1 + curl f2

      A.4. The curl distributes over scalar multiplication #

      theorem Space.curl_smul (f : SpaceEuclideanSpace (Fin 3)) (k : ) (hf : Differentiable f) :
      curl (k f) = k curl f

      A.5. The curl of a linear map is a linear map #

      theorem Space.curl_linear_map {W : Type u_1} [NormedAddCommGroup W] [NormedSpace W] (f : WSpaceEuclideanSpace (Fin 3)) (hf : ∀ (w : W), Differentiable (f w)) (hf' : IsLinearMap f) :
      IsLinearMap fun (w : W) => curl (f w)

      A.6. Preliminary lemmas about second derivatives #

      theorem Space.deriv_coord_2nd_add {i u v w : Fin 3} (f : SpaceEuclideanSpace (Fin 3)) (hf : ContDiff 2 f) :
      (deriv i fun (x : Space) => deriv u (fun (x : Space) => f x u) x + (deriv v (fun (x : Space) => f x v) x + deriv w (fun (x : Space) => f x w) x)) = deriv i (deriv u fun (x : Space) => f x u) + deriv i (deriv v fun (x : Space) => f x v) + deriv i (deriv w fun (x : Space) => f x w)

      Second derivatives distribute coordinate-wise over addition (all three components for div).

      theorem Space.deriv_coord_2nd_sub {u v w : Fin 3} (f : SpaceEuclideanSpace (Fin 3)) (hf : ContDiff 2 f) :
      (deriv u fun (x : Space) => deriv v (fun (x : Space) => f x w) x - deriv w (fun (x : Space) => f x v) x) = deriv u (deriv v fun (x : Space) => f x w) - deriv u (deriv w fun (x : Space) => f x v)

      Second derivatives distribute coordinate-wise over subtraction (two components for curl).

      A.7. The div of a curl is zero #

      A.8. The curl of a curl #

      B. The curl on distributions #

      The curl of a distribution Space →d[ℝ] (EuclideanSpace ℝ (Fin 3)) as a distribution Space →d[ℝ] (EuclideanSpace ℝ (Fin 3)).

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        B.1. The components of the curl #

        B.2. Basic equalities #

        B.3. The curl of a grad is zero #

        @[simp]

        The curl of a grad is equal to zero.