PhysLean Documentation

PhysLean.SpaceAndTime.TimeAndSpace.Basic

Functions and distributions on Time and Space d #

i. Overview #

In this module we define and prove basic lemmas about derivatives of functions and distributions on both Time and Space d.

We put these results in the namespace Space by convention.

ii. Key results #

iii. Table of contents #

iv. References #

A. Derivatives involving time and space #

A.1. Space and time derivatives in terms of curried functions #

theorem Space.fderiv_space_eq_fderiv_curry {d : } {M : Type u_1} [NormedAddCommGroup M] [NormedSpace M] (f : TimeSpace dM) (t : Time) (x dx : Space d) (hf : Differentiable f) :
(fderiv (fun (x' : Space d) => f t x') x) dx = (fderiv f (t, x)) (0, dx)
theorem Space.fderiv_time_eq_fderiv_curry {d : } {M : Type u_1} [NormedAddCommGroup M] [NormedSpace M] (f : TimeSpace dM) (t dt : Time) (x : Space d) (hf : Differentiable f) :
(fderiv (fun (t' : Time) => f t' x) t) dt = (fderiv f (t, x)) (dt, 0)

A.2. Commuting time and space derivatives #

theorem Space.fderiv_time_commute_fderiv_space {d : } {M : Type u_1} [NormedAddCommGroup M] [NormedSpace M] (f : TimeSpace dM) (t dt : Time) (x dx : Space d) (hf : ContDiff 2 f) :
(fderiv (fun (t' : Time) => (fderiv (fun (x' : Space d) => f t' x') x) dx) t) dt = (fderiv (fun (x' : Space d) => (fderiv (fun (t' : Time) => f t' x') t) dt) x) dx

Derivatives along space coordinates and time commute.

theorem Space.time_deriv_comm_space_deriv {d : } {i : Fin d} {M : Type} [NormedAddCommGroup M] [NormedSpace M] {f : TimeSpace dM} (hf : ContDiff 2 f) (t : Time) (x : Space d) :
Time.deriv (fun (t' : Time) => deriv i (f t') x) t = deriv i (fun (x' : Space d) => Time.deriv (fun (t' : Time) => f t' x') t) x

A.3. Differentiablity conditions #

theorem Space.space_deriv_differentiable_time {d : } {i : Fin d} {M : Type u_1} [NormedAddCommGroup M] [NormedSpace M] {f : TimeSpace dM} (hf : ContDiff 2 f) (x : Space d) :
Differentiable fun (t : Time) => deriv i (f t) x
theorem Space.time_deriv_differentiable_space {d : } {M : Type} [NormedAddCommGroup M] [NormedSpace M] {f : TimeSpace dM} (hf : ContDiff 2 f) (t : Time) :
Differentiable fun (x : Space d) => Time.deriv (fun (x_1 : Time) => f x_1 x) t
theorem Space.curl_differentiable_time (fₜ : TimeSpaceEuclideanSpace (Fin 3)) (hf : ContDiff 2 fₜ) (x : Space) :
Differentiable fun (t : Time) => curl (fₜ t) x

A.4. Time derivative commute with curl #

theorem Space.time_deriv_curl_commute (fₜ : TimeSpaceEuclideanSpace (Fin 3)) (t : Time) (x : Space) (hf : ContDiff 2 fₜ) :
Time.deriv (fun (t : Time) => curl (fₜ t) x) t = curl (fun (x : Space) => Time.deriv (fun (t : Time) => fₜ t x) t) x

Curl and time derivative commute.

B. Derivatives of distributions on Time × Space d #

B.1. Time derivatives #

The time derivative of a distribution dependent on time and space.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    B.2. Space derivatives #

    The space derivative of a distribution dependent on time and space.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      B.2.1. Space derivatives commute #

      B.3. Time and space derivatives commute #

      B.4. The spatial gradient #

      The spatial gradient of a distribution dependent on time and space.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem Space.distSpaceGrad_apply {d : } (f : (Time × Space d)→d[] ) (ε : SchwartzMap (Time × Space d) ) :
        (distSpaceGrad f) ε = fun (i : Fin d) => ((distSpaceDeriv i) f) ε

        B.5. The spatial divergence #

        The spatial divergence of a distribution dependent on time and space.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          B.6. The spatial curl #

          The curl of a distribution dependent on time and space.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For