PhysLean Documentation

PhysLean.SpaceAndTime.Space.Derivatives.Basic

Derivatives on Space #

i. Overview #

In this module we define derivatives of functions and distributions on space Space d, in the standard directions.

ii. Key results #

iii. Table of contents #

iv. References #

A. Derivatives of functions on Space d #

noncomputable def Space.deriv {M : Type u_1} {d : } [AddCommGroup M] [Module M] [TopologicalSpace M] (μ : Fin d) (f : Space dM) :
Space dM

Given a function f : Space d → M the derivative of f in direction μ.

Equations
Instances For

    Given a function f : Space d → M the derivative of f in direction μ.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      A.1. Basic equalities #

      theorem Space.deriv_eq {M : Type u_1} {d : } [AddCommGroup M] [Module M] [TopologicalSpace M] (μ : Fin d) (f : Space dM) (x : Space d) :
      deriv μ f x = (fderiv f x) (EuclideanSpace.single μ 1)
      theorem Space.deriv_eq_fderiv_basis {M : Type u_1} {d : } [AddCommGroup M] [Module M] [TopologicalSpace M] (μ : Fin d) (f : Space dM) (x : Space d) :
      deriv μ f x = (fderiv f x) (basis μ)

      A.2. Derivative of the constant function #

      @[simp]
      theorem Space.deriv_const {M : Type u_1} {d : } {t : Space d} [NormedAddCommGroup M] [NormedSpace M] (m : M) (μ : Fin d) :
      deriv μ (fun (x : Space d) => m) t = 0

      A.3. Derivative distributes over addition #

      theorem Space.deriv_add {M : Type u_1} {d : } {u : Fin d} [NormedAddCommGroup M] [NormedSpace M] (f1 f2 : Space dM) (hf1 : Differentiable f1) (hf2 : Differentiable f2) :
      deriv u (f1 + f2) = deriv u f1 + deriv u f2

      Derivatives on space distribute over addition.

      theorem Space.deriv_coord_add {d : } {u i : Fin d} (f1 f2 : Space dEuclideanSpace (Fin d)) (hf1 : Differentiable f1) (hf2 : Differentiable f2) :
      (deriv u fun (x : Space d) => f1 x i + f2 x i) = (deriv u fun (x : Space d) => f1 x i) + deriv u fun (x : Space d) => f2 x i

      Derivatives on space distribute coordinate-wise over addition.

      A.4. Derivative distributes over scalar multiplication #

      theorem Space.deriv_smul {M : Type u_1} {d : } {u : Fin d} [NormedAddCommGroup M] [NormedSpace M] (f : Space dM) (k : ) (hf : Differentiable f) :
      deriv u (k f) = k deriv u f

      Scalar multiplication on space derivatives.

      theorem Space.deriv_coord_smul {d : } {u i : Fin d} {x : Space d} (f : Space dEuclideanSpace (Fin d)) (k : ) (hf : Differentiable f) :
      deriv u (fun (x : Space d) => k * f x i) x = (k deriv u fun (x : Space d) => f x i) x

      Coordinate-wise scalar multiplication on space derivatives.

      A.5. Two spatial derivatives commute #

      theorem Space.deriv_commute {M : Type u_1} {d : } {u v : Fin d} [NormedAddCommGroup M] [NormedSpace M] (f : Space dM) (hf : ContDiff 2 f) :
      deriv u (deriv v f) = deriv v (deriv u f)

      Derivatives on space commute with one another.

      A.6. Derivative of a component #

      @[simp]
      theorem Space.deriv_component_same {d : } (μ : Fin d) (x : Space d) :
      deriv μ (fun (x : Space d) => x μ) x = 1
      theorem Space.deriv_component_diff {d : } (μ ν : Fin d) (x : Space d) (h : μ ν) :
      deriv μ (fun (x : Space d) => x ν) x = 0
      theorem Space.deriv_component {d : } (μ ν : Fin d) (x : Space d) :
      deriv ν (fun (x : Space d) => x μ) x = if ν = μ then 1 else 0

      A.7. Derivative of a component squared #

      theorem Space.deriv_component_sq {d : } {ν μ : Fin d} (x : Space d) :
      deriv ν (fun (x : Space d) => x μ ^ 2) x = if ν = μ then 2 * x μ else 0

      A.8. Derivivatives of components #

      theorem Space.deriv_euclid {n d : } {ν : Fin d} {μ : Fin n} {f : Space dEuclideanSpace (Fin n)} (hf : Differentiable f) (x : Space d) :
      deriv ν (fun (x : Space d) => f x μ) x = deriv ν (fun (x : Space d) => f x) x μ
      theorem Space.deriv_lorentz_vector {d : } {ν : Fin d} {μ : Fin 1 Fin d} {f : Space dLorentz.Vector d} (hf : Differentiable f) (x : Space d) :
      deriv ν (fun (x : Space d) => f x μ) x = deriv ν (fun (x : Space d) => f x) x μ

      A.9. Derivative of a norm squared #

      A.9.1. Differentiability of the norm squared function #

      A.9.2. Derivative of the norm squared function #

      theorem Space.deriv_norm_sq {d : } (x : Space d) (i : Fin d) :
      deriv i (fun (x : Space d) => x ^ 2) x = 2 * x i

      A.10. Derivative of the inner product #

      A.11.1. Differentiability of the inner product function #

      theorem Space.inner_differentiable {d : } :
      Differentiable fun (y : Space d) => inner y y

      The inner product is differentiable.

      A.11.2. Derivative of the inner product function #

      theorem Space.deriv_eq_inner_self {d : } (x : Space d) (i : Fin d) :
      deriv i (fun (x : Space d) => inner x x) x = 2 * x i

      A.12. Differentiability of derivatives #

      theorem Space.deriv_differentiable {M : Type u_1} [NormedAddCommGroup M] [NormedSpace M] {d : } {f : Space dM} (hf : ContDiff 2 f) (i : Fin d) :

      B. Derivatives of distributions on Space d #

      B.1. The definition #

      noncomputable def Space.distDeriv {M : Type} {d : } [NormedAddCommGroup M] [NormedSpace M] (μ : Fin d) :

      Given a distribution (function) f : Space d →d[ℝ] M the derivative of f in direction μ.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        B.2. Basic equality #

        theorem Space.distDeriv_apply {M : Type} {d : } [NormedAddCommGroup M] [NormedSpace M] (μ : Fin d) (f : (Space d)→d[] M) (ε : SchwartzMap (Space d) ) :
        ((distDeriv μ) f) ε = (((Distribution.fderivD ) f) ε) (basis μ)

        B.3. Commutation of derivatives #

        theorem Space.distDeriv_commute {M : Type} {d : } [NormedAddCommGroup M] [NormedSpace M] (μ ν : Fin d) (f : (Space d)→d[] M) :
        (distDeriv ν) ((distDeriv μ) f) = (distDeriv μ) ((distDeriv ν) f)