Derivatives on Space #
i. Overview #
In this module we define derivatives of functions and distributions on space Space d,
in the standard directions.
ii. Key results #
deriv: The derivative of a function on space in a given direction.distDeriv: The derivative of a distribution on space in a given direction.
iii. Table of contents #
- A. Derivatives of functions on
Space d- A.1. Basic equalities
- A.2. Derivative of the constant function
- A.3. Derivative distributes over addition
- A.4. Derivative distributes over scalar multiplication
- A.5. Two spatial derivatives commute
- A.6. Derivative of a component
- A.7. Derivative of a component squared
- A.8. Derivivatives of components
- A.9. Derivative of a norm squared
- A.9.1. Differentiability of the norm squared function
- A.9.2. Derivative of the norm squared function
- A.10. Derivative of the inner product
- A.11.1. Differentiability of the inner product function
- A.11.2. Derivative of the inner product function
- A.12. Differentiability of derivatives
- B. Derivatives of distributions on
Space d- B.1. The definition
- B.2. Basic equality
- B.3. Commutation of derivatives
iv. References #
noncomputable def
Space.deriv
{M : Type u_1}
{d : ℕ}
[AddCommGroup M]
[Module ℝ M]
[TopologicalSpace M]
(μ : Fin d)
(f : Space d → M)
:
Space d → M
Given a function f : Space d → M the derivative of f in direction μ.
Equations
- Space.deriv μ f x = (fderiv ℝ f x) (EuclideanSpace.single μ 1)
Instances For
Given a function f : Space d → M the derivative of f in direction μ.
Equations
- One or more equations did not get rendered due to their size.
Instances For
A.1. Basic equalities #
theorem
Space.deriv_eq
{M : Type u_1}
{d : ℕ}
[AddCommGroup M]
[Module ℝ M]
[TopologicalSpace M]
(μ : Fin d)
(f : Space d → M)
(x : Space d)
:
A.2. Derivative of the constant function #
@[simp]
theorem
Space.deriv_const
{M : Type u_1}
{d : ℕ}
{t : Space d}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
(m : M)
(μ : Fin d)
:
A.3. Derivative distributes over addition #
theorem
Space.deriv_add
{M : Type u_1}
{d : ℕ}
{u : Fin d}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
(f1 f2 : Space d → M)
(hf1 : Differentiable ℝ f1)
(hf2 : Differentiable ℝ f2)
:
Derivatives on space distribute over addition.
theorem
Space.deriv_coord_add
{d : ℕ}
{u i : Fin d}
(f1 f2 : Space d → EuclideanSpace ℝ (Fin d))
(hf1 : Differentiable ℝ f1)
(hf2 : Differentiable ℝ f2)
:
Derivatives on space distribute coordinate-wise over addition.
A.4. Derivative distributes over scalar multiplication #
theorem
Space.deriv_smul
{M : Type u_1}
{d : ℕ}
{u : Fin d}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
(f : Space d → M)
(k : ℝ)
(hf : Differentiable ℝ f)
:
Scalar multiplication on space derivatives.
A.5. Two spatial derivatives commute #
A.6. Derivative of a component #
A.7. Derivative of a component squared #
A.8. Derivivatives of components #
A.9. Derivative of a norm squared #
A.9.1. Differentiability of the norm squared function #
A.9.2. Derivative of the norm squared function #
A.10. Derivative of the inner product #
A.11.1. Differentiability of the inner product function #
The inner product is differentiable.
A.11.2. Derivative of the inner product function #
A.12. Differentiability of derivatives #
theorem
Space.deriv_differentiable
{M : Type u_1}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
{d : ℕ}
{f : Space d → M}
(hf : ContDiff ℝ 2 f)
(i : Fin d)
:
Differentiable ℝ (deriv i f)
B.1. The definition #
noncomputable def
Space.distDeriv
{M : Type}
{d : ℕ}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
(μ : Fin d)
:
Given a distribution (function) f : Space d →d[ℝ] M the derivative
of f in direction μ.
Equations
- One or more equations did not get rendered due to their size.
Instances For
B.2. Basic equality #
theorem
Space.distDeriv_apply
{M : Type}
{d : ℕ}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
(μ : Fin d)
(f : (Space d)→d[ℝ] M)
(ε : SchwartzMap (Space d) ℝ)
:
B.3. Commutation of derivatives #
theorem
Space.schwartMap_fderiv_comm
{d : ℕ}
(μ ν : Fin d)
(x : Space d)
(η : SchwartzMap (Space d) ℝ)
:
((SchwartzMap.evalCLM (basis μ))
((SchwartzMap.fderivCLM ℝ) ((SchwartzMap.evalCLM (basis ν)) ((SchwartzMap.fderivCLM ℝ) η))))
x = ((SchwartzMap.evalCLM (basis ν))
((SchwartzMap.fderivCLM ℝ) ((SchwartzMap.evalCLM (basis μ)) ((SchwartzMap.fderivCLM ℝ) η))))
x