PhysLean Documentation

PhysLean.Electromagnetism.Dynamics.IsExtrema

Extrema of the Lagrangian density #

i. Overview #

In this module we define what it means for an electromagnetic potential to be an extremum of the Lagrangian density in presence of a Lorentz current density.

This is equivalent to the electromagnetic potential satisfying Maxwell's equations with sources, i.e. Gauss's law and Ampère's law.

ii. Key results #

iii. Table of contents #

iv. References #

A. The condition for an extrema of the Lagrangian density #

The condition on an electromagnetic potential to be an extrema of the lagrangian.

Equations
Instances For

    A.1. Extrema condition in terms of the field strength matrix #

    theorem Electromagnetism.ElectromagneticPotential.isExtrema_iff_fieldStrengthMatrix {d : β„•} {𝓕 : FreeSpace} (A : ElectromagneticPotential d) (hA : ContDiff ℝ (β†‘βŠ€) A) (J : LorentzCurrentDensity d) (hJ : ContDiff ℝ (β†‘βŠ€) J) :
    IsExtrema 𝓕 A J ↔ βˆ€ (x : SpaceTime d) (Ξ½ : Fin 1 βŠ• Fin d), βˆ‘ ΞΌ : Fin 1 βŠ• Fin d, SpaceTime.deriv ΞΌ (fun (x : SpaceTime d) => (A.fieldStrengthMatrix x) (ΞΌ, Ξ½)) x = 𝓕.ΞΌβ‚€ * J x Ξ½

    B. Gauss's law and Ampère's law and the extrema condition #

    theorem Electromagnetism.ElectromagneticPotential.isExtrema_iff_gauss_ampere_magneticFieldMatrix {d : β„•} {𝓕 : FreeSpace} {A : ElectromagneticPotential d} (hA : ContDiff ℝ (β†‘βŠ€) A) (J : LorentzCurrentDensity d) (hJ : ContDiff ℝ (β†‘βŠ€) J) :
    IsExtrema 𝓕 A J ↔ βˆ€ (t : Time) (x : Space d), Space.div (electricField 𝓕.c A t) x = LorentzCurrentDensity.chargeDensity 𝓕.c J t x / 𝓕.Ξ΅β‚€ ∧ βˆ€ (i : Fin d), 𝓕.ΞΌβ‚€ * 𝓕.Ξ΅β‚€ * Time.deriv (fun (t : Time) => electricField 𝓕.c A t x) t i = βˆ‘ j : Fin d, Space.deriv j (fun (x : Space d) => magneticFieldMatrix 𝓕.c A t x (j, i)) x - 𝓕.ΞΌβ‚€ * LorentzCurrentDensity.currentDensity 𝓕.c J t x i

    C. Time derivatives from the extrema condition #

    theorem Electromagnetism.ElectromagneticPotential.time_deriv_electricField_of_isExtrema {d : β„•} {A : ElectromagneticPotential d} {𝓕 : FreeSpace} (hA : ContDiff ℝ (β†‘βŠ€) A) (J : LorentzCurrentDensity d) (hJ : ContDiff ℝ (β†‘βŠ€) J) (h : IsExtrema 𝓕 A J) (t : Time) (x : Space d) (i : Fin d) :
    Time.deriv (fun (x_1 : Time) => electricField 𝓕.c A x_1 x) t i = 1 / (𝓕.ΞΌβ‚€ * 𝓕.Ξ΅β‚€) * βˆ‘ j : Fin d, Space.deriv j (fun (x : Space d) => magneticFieldMatrix 𝓕.c A t x (j, i)) x - 1 / 𝓕.Ξ΅β‚€ * LorentzCurrentDensity.currentDensity 𝓕.c J t x i

    D. Second time derivatives from the extrema condition #

    D.1. Second time derivatives of the magnetic field from the extrema condition #

    theorem Electromagnetism.ElectromagneticPotential.time_deriv_time_deriv_magneticFieldMatrix_of_isExtrema {d : β„•} {A : ElectromagneticPotential d} {𝓕 : FreeSpace} (hA : ContDiff ℝ (β†‘βŠ€) A) (J : LorentzCurrentDensity d) (hJd : Differentiable ℝ J) (hJ : ContDiff ℝ (β†‘βŠ€) J) (h : IsExtrema 𝓕 A J) (t : Time) (x : Space d) (i j : Fin d) :
    Time.deriv (Time.deriv fun (x_1 : Time) => magneticFieldMatrix 𝓕.c A x_1 x (i, j)) t = 𝓕.c.val ^ 2 * βˆ‘ k : Fin d, Space.deriv k (Space.deriv k fun (x : Space d) => magneticFieldMatrix 𝓕.c A t x (i, j)) x + 𝓕.Ρ₀⁻¹ * (Space.deriv j (fun (x : Space d) => LorentzCurrentDensity.currentDensity 𝓕.c J t x i) x - Space.deriv i (fun (x : Space d) => LorentzCurrentDensity.currentDensity 𝓕.c J t x j) x)

    D.2. Second time derivatives of the electric field from the extrema condition #

    theorem Electromagnetism.ElectromagneticPotential.time_deriv_time_deriv_electricField_of_isExtrema {d : β„•} {A : ElectromagneticPotential d} {𝓕 : FreeSpace} (hA : ContDiff ℝ (β†‘βŠ€) A) (J : LorentzCurrentDensity d) (hJ : ContDiff ℝ (β†‘βŠ€) J) (h : IsExtrema 𝓕 A J) (t : Time) (x : Space d) (i : Fin d) :
    Time.deriv (Time.deriv fun (x_1 : Time) => electricField 𝓕.c A x_1 x i) t = 𝓕.c.val ^ 2 * βˆ‘ j : Fin d, Space.deriv j (Space.deriv j fun (x : Space d) => electricField 𝓕.c A t x i) x - 𝓕.c.val ^ 2 / 𝓕.Ξ΅β‚€ * Space.deriv i (fun (x : Space d) => LorentzCurrentDensity.chargeDensity 𝓕.c J t x) x - 𝓕.c.val ^ 2 * 𝓕.ΞΌβ‚€ * Time.deriv (fun (x_1 : Time) => LorentzCurrentDensity.currentDensity 𝓕.c J x_1 x i) t