Extrema of the Lagrangian density #
i. Overview #
In this module we define what it means for an electromagnetic potential to be an extremum of the Lagrangian density in presence of a Lorentz current density.
This is equivalent to the electromagnetic potential satisfying Maxwell's equations with sources, i.e. Gauss's law and Ampère's law.
ii. Key results #
IsExtrema: The condition on an electromagnetic potential to be an extrema of the lagrangian.isExtrema_iff_gauss_ampere_magneticFieldMatrix: The electromagnetic potential is an extrema of the lagrangian if and only if Gauss's law and Ampère's law hold (in terms of the magnetic field matrix).time_deriv_time_deriv_magneticFieldMatrix_of_isExtrema: A wave-like equation for the magnetic field matrix from the extrema condition.time_deriv_time_deriv_electricField_of_isExtrema: A wave-like equation for the electric field from the extrema condition.
iii. Table of contents #
- A. The condition for an extrema of the Lagrangian density
- A.1. Extrema condition in terms of the field strength matrix
- B. Gauss's law and Ampère's law and the extrema condition
- C. Time derivatives from the extrema condition
- D. Second time derivatives from the extrema condition
- D.1. Second time derivatives of the magnetic field from the extrema condition
- D.2. Second time derivatives of the electric field from the extrema condition
iv. References #
A. The condition for an extrema of the Lagrangian density #
def
Electromagnetism.ElectromagneticPotential.IsExtrema
{d : β}
(π : FreeSpace)
(A : ElectromagneticPotential d)
(J : LorentzCurrentDensity d)
:
The condition on an electromagnetic potential to be an extrema of the lagrangian.
Equations
Instances For
theorem
Electromagnetism.ElectromagneticPotential.isExtrema_iff_gradLagrangian
{d : β}
{π : FreeSpace}
(A : ElectromagneticPotential d)
(J : LorentzCurrentDensity d)
:
A.1. Extrema condition in terms of the field strength matrix #
theorem
Electromagnetism.ElectromagneticPotential.isExtrema_iff_fieldStrengthMatrix
{d : β}
{π : FreeSpace}
(A : ElectromagneticPotential d)
(hA : ContDiff β (ββ€) A)
(J : LorentzCurrentDensity d)
(hJ : ContDiff β (ββ€) J)
:
B. Gauss's law and Ampère's law and the extrema condition #
theorem
Electromagnetism.ElectromagneticPotential.isExtrema_iff_gauss_ampere_magneticFieldMatrix
{d : β}
{π : FreeSpace}
{A : ElectromagneticPotential d}
(hA : ContDiff β (ββ€) A)
(J : LorentzCurrentDensity d)
(hJ : ContDiff β (ββ€) J)
:
IsExtrema π A J β β (t : Time) (x : Space d),
Space.div (electricField π.c A t) x = LorentzCurrentDensity.chargeDensity π.c J t x / π.Ξ΅β β§ β (i : Fin d),
π.ΞΌβ * π.Ξ΅β * Time.deriv (fun (t : Time) => electricField π.c A t x) t i = β j : Fin d, Space.deriv j (fun (x : Space d) => magneticFieldMatrix π.c A t x (j, i)) x - π.ΞΌβ * LorentzCurrentDensity.currentDensity π.c J t x i
C. Time derivatives from the extrema condition #
theorem
Electromagnetism.ElectromagneticPotential.time_deriv_electricField_of_isExtrema
{d : β}
{A : ElectromagneticPotential d}
{π : FreeSpace}
(hA : ContDiff β (ββ€) A)
(J : LorentzCurrentDensity d)
(hJ : ContDiff β (ββ€) J)
(h : IsExtrema π A J)
(t : Time)
(x : Space d)
(i : Fin d)
:
Time.deriv (fun (x_1 : Time) => electricField π.c A x_1 x) t i = 1 / (π.ΞΌβ * π.Ξ΅β) * β j : Fin d, Space.deriv j (fun (x : Space d) => magneticFieldMatrix π.c A t x (j, i)) x - 1 / π.Ξ΅β * LorentzCurrentDensity.currentDensity π.c J t x i
D. Second time derivatives from the extrema condition #
D.1. Second time derivatives of the magnetic field from the extrema condition #
theorem
Electromagnetism.ElectromagneticPotential.time_deriv_time_deriv_magneticFieldMatrix_of_isExtrema
{d : β}
{A : ElectromagneticPotential d}
{π : FreeSpace}
(hA : ContDiff β (ββ€) A)
(J : LorentzCurrentDensity d)
(hJd : Differentiable β J)
(hJ : ContDiff β (ββ€) J)
(h : IsExtrema π A J)
(t : Time)
(x : Space d)
(i j : Fin d)
:
Time.deriv (Time.deriv fun (x_1 : Time) => magneticFieldMatrix π.c A x_1 x (i, j)) t = π.c.val ^ 2 * β k : Fin d, Space.deriv k (Space.deriv k fun (x : Space d) => magneticFieldMatrix π.c A t x (i, j)) x + π.Ξ΅ββ»ΒΉ * (Space.deriv j (fun (x : Space d) => LorentzCurrentDensity.currentDensity π.c J t x i) x - Space.deriv i (fun (x : Space d) => LorentzCurrentDensity.currentDensity π.c J t x j) x)
D.2. Second time derivatives of the electric field from the extrema condition #
theorem
Electromagnetism.ElectromagneticPotential.time_deriv_time_deriv_electricField_of_isExtrema
{d : β}
{A : ElectromagneticPotential d}
{π : FreeSpace}
(hA : ContDiff β (ββ€) A)
(J : LorentzCurrentDensity d)
(hJ : ContDiff β (ββ€) J)
(h : IsExtrema π A J)
(t : Time)
(x : Space d)
(i : Fin d)
:
Time.deriv (Time.deriv fun (x_1 : Time) => electricField π.c A x_1 x i) t = π.c.val ^ 2 * β j : Fin d, Space.deriv j (Space.deriv j fun (x : Space d) => electricField π.c A t x i) x - π.c.val ^ 2 / π.Ξ΅β * Space.deriv i (fun (x : Space d) => LorentzCurrentDensity.chargeDensity π.c J t x) x - π.c.val ^ 2 * π.ΞΌβ * Time.deriv (fun (x_1 : Time) => LorentzCurrentDensity.currentDensity π.c J x_1 x i) t