The Lorentz Current Density #
i. Overview #
In this module we define the Lorentz current density
and its decomposition into charge density and current density.
The Lorentz current density is often called the four-current and given then the symbol J.
The current density is given in terms of the charge density ρ and the current density
\vec j as J = (c ρ, \vec j).
ii. Key results #
LorentzCurrentDensity: The type of Lorentz current densities.LorentzCurrentDensity.chargeDensity: The charge density associated with a Lorentz current density.LorentzCurrentDensity.currentDensity: The current density associated with a Lorentz current density.
iii. Table of contents #
- A. The Lorentz Current Density
- B. The underlying charge
- B.1. Charge density of zero Lorentz current density
- B.2. Differentiability of the charge density
- B.3. Smoothness of the charge density
- C. The underlying current density
- C.1. current density of zero Lorentz current density
- C.2. Differentiability of the current density
- C.3. Smoothness of the current density
iv. References #
A. The Lorentz Current Density #
The Lorentz current density is a Lorentz Vector field on spacetime.
@[reducible, inline]
The Lorentz current density, also called four-current.
Equations
Instances For
B. The underlying charge #
noncomputable def
Electromagnetism.LorentzCurrentDensity.chargeDensity
{d : ℕ}
(c : SpeedOfLight := 1)
(J : LorentzCurrentDensity d)
:
The underlying charge density associated with a Lorentz current density.
Equations
Instances For
theorem
Electromagnetism.LorentzCurrentDensity.chargeDensity_eq_timeSlice
{d : ℕ}
{c : SpeedOfLight}
{J : LorentzCurrentDensity d}
:
B.1. Charge density of zero Lorentz current density #
@[simp]
B.2. Differentiability of the charge density #
theorem
Electromagnetism.LorentzCurrentDensity.chargeDensity_differentiable
{d : ℕ}
{c : SpeedOfLight}
{J : LorentzCurrentDensity d}
(hJ : Differentiable ℝ J)
:
Differentiable ℝ ↿(chargeDensity c J)
theorem
Electromagnetism.LorentzCurrentDensity.chargeDensity_differentiable_space
{d : ℕ}
{c : SpeedOfLight}
{J : LorentzCurrentDensity d}
(hJ : Differentiable ℝ J)
(t : Time)
:
Differentiable ℝ fun (x : Space d) => chargeDensity c J t x
B.3. Smoothness of the charge density #
theorem
Electromagnetism.LorentzCurrentDensity.chargeDensity_contDiff
{n : WithTop ℕ∞}
{d : ℕ}
{c : SpeedOfLight}
{J : LorentzCurrentDensity d}
(hJ : ContDiff ℝ n J)
:
ContDiff ℝ n ↿(chargeDensity c J)
C. The underlying current density #
noncomputable def
Electromagnetism.LorentzCurrentDensity.currentDensity
{d : ℕ}
(c : SpeedOfLight := 1)
(J : LorentzCurrentDensity d)
:
Time → Space d → EuclideanSpace ℝ (Fin d)
The underlying (non-Lorentz) current density associated with a Lorentz current density.
Equations
- Electromagnetism.LorentzCurrentDensity.currentDensity c J t x i = J ((SpaceTime.toTimeAndSpace c).symm (t, x)) (Sum.inr i)
Instances For
theorem
Electromagnetism.LorentzCurrentDensity.currentDensity_eq_timeSlice
{c : SpeedOfLight}
{d : ℕ}
{J : LorentzCurrentDensity d}
:
C.1. current density of zero Lorentz current density #
@[simp]
C.2. Differentiability of the current density #
theorem
Electromagnetism.LorentzCurrentDensity.currentDensity_differentiable
{d : ℕ}
{c : SpeedOfLight}
{J : LorentzCurrentDensity d}
(hJ : Differentiable ℝ J)
:
Differentiable ℝ ↿(currentDensity c J)
theorem
Electromagnetism.LorentzCurrentDensity.currentDensity_apply_differentiable
{d : ℕ}
{c : SpeedOfLight}
{J : LorentzCurrentDensity d}
(hJ : Differentiable ℝ J)
(i : Fin d)
:
Differentiable ℝ ↿fun (t : Time) (x : Space d) => currentDensity c J t x i
theorem
Electromagnetism.LorentzCurrentDensity.currentDensity_differentiable_space
{d : ℕ}
{c : SpeedOfLight}
{J : LorentzCurrentDensity d}
(hJ : Differentiable ℝ J)
(t : Time)
:
Differentiable ℝ fun (x : Space d) => currentDensity c J t x
theorem
Electromagnetism.LorentzCurrentDensity.currentDensity_apply_differentiable_space
{d : ℕ}
{c : SpeedOfLight}
{J : LorentzCurrentDensity d}
(hJ : Differentiable ℝ J)
(t : Time)
(i : Fin d)
:
Differentiable ℝ fun (x : Space d) => currentDensity c J t x i
theorem
Electromagnetism.LorentzCurrentDensity.currentDensity_differentiable_time
{d : ℕ}
{c : SpeedOfLight}
{J : LorentzCurrentDensity d}
(hJ : Differentiable ℝ J)
(x : Space d)
:
Differentiable ℝ fun (t : Time) => currentDensity c J t x
theorem
Electromagnetism.LorentzCurrentDensity.currentDensity_apply_differentiable_time
{d : ℕ}
{c : SpeedOfLight}
{J : LorentzCurrentDensity d}
(hJ : Differentiable ℝ J)
(x : Space d)
(i : Fin d)
:
Differentiable ℝ fun (t : Time) => currentDensity c J t x i
C.3. Smoothness of the current density #
theorem
Electromagnetism.LorentzCurrentDensity.currentDensity_ContDiff
{n : WithTop ℕ∞}
{d : ℕ}
{c : SpeedOfLight}
{J : LorentzCurrentDensity d}
(hJ : ContDiff ℝ n J)
:
ContDiff ℝ n ↿(currentDensity c J)