Line In Cubic Odd case #
We say that a linear solution satisfies the lineInCubic
property
if the line through that point and through the two different planes formed by the basis of
LinSols
lies in the cubic.
We show that for a solution all its permutations satisfy this property, then the charge must be zero.
The main reference for this file is:
theorem
PureU1.Odd.lineInCubic_expand
{n : ℕ}
{S : (PureU1 (2 * n + 1)).LinSols}
(h : LineInCubic S)
(g f : Fin n → ℚ)
:
S.val = VectorLikeOddPlane.P g + VectorLikeOddPlane.P! f →
∀ (a b : ℚ),
3 * a * b * (a * ((accCubeTriLinSymm (VectorLikeOddPlane.P g)) (VectorLikeOddPlane.P g)) (VectorLikeOddPlane.P! f) + b * ((accCubeTriLinSymm (VectorLikeOddPlane.P! f)) (VectorLikeOddPlane.P! f)) (VectorLikeOddPlane.P g)) = 0
The condition that a linear solution sits on a line between the two planes
within the cubic expands into a on accCubeTriLinSymm
applied to the points
within the planes.
theorem
PureU1.Odd.line_in_cubic_P_P_P!
{n : ℕ}
{S : (PureU1 (2 * n + 1)).LinSols}
(h : LineInCubic S)
(g f : Fin n → ℚ)
:
S.val = VectorLikeOddPlane.P g + VectorLikeOddPlane.P! f →
((accCubeTriLinSymm (VectorLikeOddPlane.P g)) (VectorLikeOddPlane.P g)) (VectorLikeOddPlane.P! f) = 0
A LinSol
satisfies lineInCubicPerm
if all its permutations satisfy lineInCubic
.
Equations
- PureU1.Odd.LineInCubicPerm S = ∀ (M : (PureU1.FamilyPermutations (2 * n + 1)).group), PureU1.Odd.LineInCubic (((PureU1.FamilyPermutations (2 * n + 1)).linSolRep M) S)
Instances For
theorem
PureU1.Odd.lineInCubicPerm_self
{n : ℕ}
{S : (PureU1 (2 * n + 1)).LinSols}
(hS : LineInCubicPerm S)
:
If lineInCubicPerm S
, then lineInCubic S
.
theorem
PureU1.Odd.lineInCubicPerm_permute
{n : ℕ}
{S : (PureU1 (2 * n + 1)).LinSols}
(hS : LineInCubicPerm S)
(M' : (FamilyPermutations (2 * n + 1)).group)
:
LineInCubicPerm (((FamilyPermutations (2 * n + 1)).linSolRep M') S)
If lineInCubicPerm S
, then lineInCubicPerm (M S)
for all permutations M
.
theorem
PureU1.Odd.lineInCubicPerm_swap
{n : ℕ}
{S : (PureU1 (2 * n.succ + 1)).LinSols}
(LIC : LineInCubicPerm S)
(j : Fin n.succ)
(g f : Fin n.succ → ℚ)
:
S.val = VectorLikeOddPlane.Pa g f →
(S.val (VectorLikeOddPlane.oddShiftSnd j) - S.val (VectorLikeOddPlane.oddShiftFst j)) * ((accCubeTriLinSymm (VectorLikeOddPlane.P g)) (VectorLikeOddPlane.P g)) (VectorLikeOddPlane.basis!AsCharges j) = 0
theorem
PureU1.Odd.P_P_P!_accCube'
{n : ℕ}
{S : (PureU1 (2 * n.succ.succ + 1)).LinSols}
(f g : Fin n.succ.succ → ℚ)
(hS : S.val = VectorLikeOddPlane.Pa f g)
:
((accCubeTriLinSymm (VectorLikeOddPlane.P f)) (VectorLikeOddPlane.P f)) (VectorLikeOddPlane.basis!AsCharges 0) = (S.val (VectorLikeOddPlane.oddShiftFst 0) + S.val (VectorLikeOddPlane.oddShiftSnd 0)) * (2 * S.val VectorLikeOddPlane.oddShiftZero + S.val (VectorLikeOddPlane.oddShiftFst 0) + S.val (VectorLikeOddPlane.oddShiftSnd 0))
theorem
PureU1.Odd.lineInCubicPerm_last_cond
{n : ℕ}
{S : (PureU1 (2 * n.succ.succ + 1)).LinSols}
(LIC : LineInCubicPerm S)
:
theorem
PureU1.Odd.lineInCubicPerm_last_perm
{n : ℕ}
{S : (PureU1 (2 * n.succ.succ + 1)).LinSols}
(LIC : LineInCubicPerm S)
: