Line in plane condition #
We say a LinSol satisfies the line in plane condition if for all distinct i1, i2, i3 in
Fin n, we have
S i1 = S i2 or S i1 = - S i2 or 2 S i3 + S i1 + S i2 = 0.
We look at various consequences of this. The main reference for this material is
We will show that n ≥ 4 the line in plane condition on solutions implies the
constAbs condition.
theorem
PureU1.lineInPlaneCond_perm
{n : ℕ}
{S : (PureU1 n).LinSols}
(hS : LineInPlaneCond S)
(M : (FamilyPermutations n).group)
:
LineInPlaneCond (((FamilyPermutations n).linSolRep M) S)
theorem
PureU1.linesInPlane_eq_sq_four
{S : (PureU1 4).Sols}
(hS : LineInPlaneCond S.toLinSols)
(i j : Fin 4)
:
theorem
PureU1.linesInPlane_constAbs_four
(S : (PureU1 4).Sols)
(hS : LineInPlaneCond S.toLinSols)
: