PhysLean Documentation

PhysLean.QFT.QED.AnomalyCancellation.Basic

Anomaly cancellation of a theory with a pure U(1)-gauge group #

In a pure U(1) gauge theory with n Weyl fermions carrying charges xᵢ the anomaly cancellation conditions (ACCs) which must be satisfied for a consistent gauge theory correspond to:

The charges xᵢ have rational fractions with one another, here they are specified as rational numbers.

The vector space of charges.

Equations
Instances For

    The gravitational anomaly.

    Equations
    Instances For

      The symmetric trilinear form used to define the cubic anomaly.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem PureU1.accCubeTriLinSymm_toFun_apply_apply {n : } (S S✝ T : (PureU1Charges n).Charges) :
        ((accCubeTriLinSymm S) S✝) T = i : Fin n, S i * S✝ i * T i

        The cubic anomaly equation.

        Equations
        Instances For
          theorem PureU1.accCube_explicit (n : ) (S : (PureU1Charges n).Charges) :
          (accCube n) S = i : Fin n, S i ^ 3

          The cubic ACC for the pure-U(1) anomaly equations is equal to the sum of the cubed charges.

          def PureU1 (n : ) :

          The ACC system for a pure $U(1)$ gauge theory with $n$ fermions.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            @[simp]
            theorem PureU1_cubicACC_apply (n : ) (S : (PureU1.PureU1Charges n).Charges) :
            (PureU1 n).cubicACC S = i : Fin n, S i * S i * S i
            @[simp]
            @[simp]
            theorem PureU1_linearACCs (n : ) (i : Fin 1) :
            (PureU1 n).linearACCs i = match i with | 0 => PureU1.accGrav n
            @[simp]
            theorem PureU1_quadraticACCs (n : ) (a✝ : Fin 0) :
            (PureU1 n).quadraticACCs a✝ = a✝.elim0
            def pureU1EqCharges {n m : } (h : n = m) :

            An equivalence of vector spaces of charges when the number of fermions is equal.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              theorem pureU1_linear {n : } (S : (PureU1 n).LinSols) :
              i : Fin n, S.val i = 0

              A solution to the pure U(1) accs satisfies the linear ACCs.

              theorem pureU1_cube {n : } (S : (PureU1 n).Sols) :
              i : Fin (PureU1 n).numberCharges, S.val i ^ 3 = 0

              A solution to the pure U(1) accs satisfies the cubic ACCs.

              theorem pureU1_last {n : } (S : (PureU1 n.succ).LinSols) :
              S.val (Fin.last n) = -i : Fin n, S.val i.castSucc

              The last charge of a solution to the linear ACCs is equal to the negation of the sum of the other charges.

              theorem pureU1_anomalyFree_ext {n : } {S T : (PureU1 n.succ).LinSols} (h : ∀ (i : Fin n), S.val i.castSucc = T.val i.castSucc) :
              S = T

              Two solutions to the Linear ACCs for n.succ are equal if their first n charges are equal.

              theorem PureU1.sum_of_charges {k n : } (f : Fin k(PureU1 n).Charges) (j : Fin n) :
              (∑ i : Fin k, f i) j = i : Fin k, f i j

              The jth charge of a sum of pure-U(1) charges is equal to the sum of their jth charges.

              theorem PureU1.sum_of_anomaly_free_linear {k n : } (f : Fin k(PureU1 n).LinSols) (j : Fin n) :
              (∑ i : Fin k, f i).val j = i : Fin k, (f i).val j

              The jth charge of a sum of solutions to the linear ACC is equal to the sum of their jth charges.