PhysLean Documentation

PhysLean.QFT.QED.AnomalyCancellation.Odd.BasisLinear

Splitting the linear solutions in the odd case into two ACC-satisfying planes #

i. Overview #

We split the linear solutions of PureU1 (2 * n + 1) into two planes, where every point in either plane satisfies both the linear and cubic anomaly cancellation conditions.

ii. Key results #

iii. Table of contents #

iv. References #

A. Splitting the charges up into groups #

We have 2 * n + 1 charges, which we split up in the following ways:

| evenFst j (0 to n) | evenSnd j (n.succ to n + n.succ)|

| evenShiftZero (0) | evenShiftFst j (1 to n) |
  evenShiftSnd j (n.succ to 2 * n) | evenShiftLast (2 * n.succ - 1) |

A.1. The symmetric split: Spltting the charges up via (n + 1) + 1 #

def PureU1.VectorLikeOddPlane.oddFst {n : } (j : Fin n) :
Fin (2 * n + 1)

The inclusion of Fin n into Fin ((n + 1) + n) via the first n. This is then casted to Fin (2 * n + 1).

Equations
Instances For
    def PureU1.VectorLikeOddPlane.oddSnd {n : } (j : Fin n) :
    Fin (2 * n + 1)

    The inclusion of Fin n into Fin ((n + 1) + n) via the second n. This is then casted to Fin (2 * n + 1).

    Equations
    Instances For

      The element representing 1 in Fin ((n + 1) + n). This is then casted to Fin (2 * n + 1).

      Equations
      Instances For
        theorem PureU1.VectorLikeOddPlane.sum_odd {n : } (S : Fin (2 * n + 1)) :
        i : Fin (2 * n + 1), S i = S oddMid + i : Fin n, ((S oddFst) i + (S oddSnd) i)

        A.2. The shifted split: Spltting the charges up via 1 + n + n #

        def PureU1.VectorLikeOddPlane.oddShiftFst {n : } (j : Fin n) :
        Fin (2 * n + 1)

        The inclusion of Fin n into Fin (1 + n + n) via the first n. This is then casted to Fin (2 * n + 1).

        Equations
        Instances For
          def PureU1.VectorLikeOddPlane.oddShiftSnd {n : } (j : Fin n) :
          Fin (2 * n + 1)

          The inclusion of Fin n into Fin (1 + n + n) via the second n. This is then casted to Fin (2 * n + 1).

          Equations
          Instances For

            The element representing the 1 in Fin (1 + n + n). This is then casted to Fin (2 * n + 1).

            Equations
            Instances For
              theorem PureU1.VectorLikeOddPlane.sum_oddShift {n : } (S : Fin (2 * n + 1)) :
              i : Fin (2 * n + 1), S i = S oddShiftZero + i : Fin n, ((S oddShiftFst) i + (S oddShiftSnd) i)

              A.3. The shifte shifted split: Spltting the charges up via ((1+n)+1) + n.succ #

              The element representing the first 1 in Fin (1 + n + 1 + n.succ) casted to Fin (2 * n.succ + 1).

              Equations
              Instances For

                The inclusion of Fin n into Fin (1 + n + 1 + n.succ) via the first n and casted to Fin (2 * n.succ + 1).

                Equations
                Instances For

                  The element representing the second 1 in Fin (1 + n + 1 + n.succ) casted to 2 * n.succ + 1.

                  Equations
                  Instances For

                    The inclusion of Fin n.succ into Fin (1 + n + 1 + n.succ) via the n.succ and casted to Fin (2 * n.succ + 1).

                    Equations
                    Instances For

                      A.4. Relating the splittings together #

                      B. The first plane #

                      B.1. The basis vectors of the first plane as charges #

                      The first part of the basis as charge assignments.

                      Equations
                      Instances For

                        B.2. Components of the basis vectors as charges #

                        theorem PureU1.VectorLikeOddPlane.basis_on_other {n : } {k : Fin n} {j : Fin (2 * n + 1)} (h1 : j oddFst k) (h2 : j oddSnd k) :

                        B.3. The basis vectors satisfy the linear ACCs #

                        B.4. The basis vectors as LinSols #

                        def PureU1.VectorLikeOddPlane.basis {n : } (j : Fin n) :
                        (PureU1 (2 * n + 1)).LinSols

                        The first part of the basis as LinSols.

                        Equations
                        Instances For

                          B.5. The inclusion of the first plane into charges #

                          def PureU1.VectorLikeOddPlane.P {n : } (f : Fin n) :
                          (PureU1 (2 * n + 1)).Charges

                          A point in the span of the first part of the basis as a charge.

                          Equations
                          Instances For

                            B.6. Components of the first plane #

                            theorem PureU1.VectorLikeOddPlane.P_oddFst {n : } (f : Fin n) (j : Fin n) :
                            P f (oddFst j) = f j
                            theorem PureU1.VectorLikeOddPlane.P_oddSnd {n : } (f : Fin n) (j : Fin n) :
                            P f (oddSnd j) = -f j

                            B.7. Points on the first plane satisfies the ACCs #

                            theorem PureU1.VectorLikeOddPlane.P_linearACC {n : } (f : Fin n) :
                            (accGrav (2 * n + 1)) (P f) = 0
                            theorem PureU1.VectorLikeOddPlane.P_accCube {n : } (f : Fin n) :
                            (accCube (2 * n + 1)) (P f) = 0

                            B.8. Kernal of the inclusion into charges #

                            theorem PureU1.VectorLikeOddPlane.P_zero {n : } (f : Fin n) (h : P f = 0) (i : Fin n) :
                            f i = 0
                            def PureU1.VectorLikeOddPlane.P' {n : } (f : Fin n) :
                            (PureU1 (2 * n + 1)).LinSols

                            A point in the span of the first part of the basis.

                            Equations
                            Instances For
                              theorem PureU1.VectorLikeOddPlane.P'_val {n : } (f : Fin n) :
                              (P' f).val = P f

                              B.9. The basis vectors are linearly independent #

                              C. The second plane #

                              C.1. The basis vectors of the second plane as charges #

                              The second part of the basis as charge assignments.

                              Equations
                              Instances For

                                C.2. Components of the basis vectors as charges #

                                theorem PureU1.VectorLikeOddPlane.basis!_on_other {n : } {k : Fin n} {j : Fin (2 * n + 1)} (h1 : j oddShiftFst k) (h2 : j oddShiftSnd k) :

                                C.3. The basis vectors satisfy the linear ACCs #

                                C.4. The basis vectors as LinSols #

                                The second part of the basis as LinSols.

                                Equations
                                Instances For

                                  C.5. Permutations equal adding basis vectors #

                                  theorem PureU1.VectorLikeOddPlane.swap!_as_add {n : } {S S' : (PureU1 (2 * n + 1)).LinSols} (j : Fin n) (hS : ((FamilyPermutations (2 * n + 1)).linSolRep (pairSwap (oddShiftFst j) (oddShiftSnd j))) S = S') :

                                  Swapping the elements oddShiftFst j and oddShiftSnd j is equivalent to adding a vector basis!AsCharges j.

                                  C.6. The inclusion of the second plane into charges #

                                  def PureU1.VectorLikeOddPlane.P! {n : } (f : Fin n) :
                                  (PureU1 (2 * n + 1)).Charges

                                  A point in the span of the second part of the basis as a charge.

                                  Equations
                                  Instances For

                                    C.7. Components of the second plane #

                                    theorem PureU1.VectorLikeOddPlane.P!_oddShiftFst {n : } (f : Fin n) (j : Fin n) :
                                    P! f (oddShiftFst j) = f j
                                    theorem PureU1.VectorLikeOddPlane.P!_oddShiftSnd {n : } (f : Fin n) (j : Fin n) :
                                    P! f (oddShiftSnd j) = -f j

                                    C.8. Points on the second plane satisfies the ACCs #

                                    theorem PureU1.VectorLikeOddPlane.P!_linearACC {n : } (f : Fin n) :
                                    (accGrav (2 * n + 1)) (P! f) = 0
                                    theorem PureU1.VectorLikeOddPlane.P!_accCube {n : } (f : Fin n) :
                                    (accCube (2 * n + 1)) (P! f) = 0

                                    C.9. Kernal of the inclusion into charges #

                                    theorem PureU1.VectorLikeOddPlane.P!_zero {n : } (f : Fin n) (h : P! f = 0) (i : Fin n) :
                                    f i = 0

                                    C.10. The inclusion of the second plane into LinSols #

                                    def PureU1.VectorLikeOddPlane.P!' {n : } (f : Fin n) :
                                    (PureU1 (2 * n + 1)).LinSols

                                    A point in the span of the second part of the basis.

                                    Equations
                                    Instances For
                                      theorem PureU1.VectorLikeOddPlane.P!'_val {n : } (f : Fin n) :
                                      (P!' f).val = P! f

                                      C.11. The basis vectors are linearly independent #

                                      D. The mixed cubic ACC from points in both planes #

                                      theorem PureU1.VectorLikeOddPlane.P_P_P!_accCube {n : } (g : Fin n) (j : Fin n) :
                                      ((accCubeTriLinSymm (P g)) (P g)) (basis!AsCharges j) = P g (oddShiftFst j) ^ 2 - g j ^ 2

                                      E. The combined basis #

                                      E.1. The combined basis as LinSols #

                                      E.2. The inclusion of the span of the combined basis into charges #

                                      def PureU1.VectorLikeOddPlane.Pa {n : } (f g : Fin n) :
                                      (PureU1 (2 * n + 1)).Charges

                                      A point in the span of the basis as a charge.

                                      Equations
                                      Instances For

                                        E.3. Components of the inclusion #

                                        theorem PureU1.VectorLikeOddPlane.Pa_oddShiftShiftSnd {n : } (f g : Fin n.succ) (j : Fin n.succ) :
                                        Pa f g (oddShiftShiftSnd j) = -f j - g j

                                        E.4. Kernal of the inclusion into charges #

                                        theorem PureU1.VectorLikeOddPlane.Pa_zero {n : } (f g : Fin n.succ) (h : Pa f g = 0) (i : Fin n.succ) :
                                        f i = 0
                                        theorem PureU1.VectorLikeOddPlane.Pa_zero! {n : } (f g : Fin n.succ) (h : Pa f g = 0) (i : Fin n.succ) :
                                        g i = 0

                                        E.5. The inclusion of the span of the combined basis into LinSols #

                                        def PureU1.VectorLikeOddPlane.Pa' {n : } (f : Fin n Fin n) :
                                        (PureU1 (2 * n + 1)).LinSols

                                        A point in the span of the whole basis.

                                        Equations
                                        Instances For

                                          E.6. The combined basis vectors are linearly independent #

                                          E.7. Injectivity of the inclusion into linear solutions #

                                          theorem PureU1.VectorLikeOddPlane.Pa'_eq {n : } (f f' : Fin n.succ Fin n.succ) :
                                          Pa' f = Pa' f' f = f'
                                          theorem PureU1.VectorLikeOddPlane.Pa'_elim_eq_iff {n : } (g g' f f' : Fin n.succ) :
                                          Pa' (Sum.elim g f) = Pa' (Sum.elim g' f') Pa g f = Pa g' f'
                                          theorem PureU1.VectorLikeOddPlane.Pa_eq {n : } (g g' f f' : Fin n.succ) :
                                          Pa g f = Pa g' f' g = g' f = f'

                                          E.8. Cardinality of the basis #

                                          E.9. The basis vectors as a basis #

                                          The basis formed out of our basisa vectors.

                                          Equations
                                          Instances For

                                            F. Every Lienar solution is the sum of a point from each plane #

                                            theorem PureU1.VectorLikeOddPlane.span_basis {n : } (S : (PureU1 (2 * n.succ + 1)).LinSols) :
                                            ∃ (g : Fin n.succ) (f : Fin n.succ), S.val = P g + P! f

                                            F.1. Relation under permutations #

                                            theorem PureU1.VectorLikeOddPlane.span_basis_swap! {n : } {S' S : (PureU1 (2 * n.succ + 1)).LinSols} (j : Fin n.succ) (hS : ((FamilyPermutations (2 * n.succ + 1)).linSolRep (pairSwap (oddShiftFst j) (oddShiftSnd j))) S = S') (g f : Fin n.succ) (hS1 : S.val = P g + P! f) :
                                            ∃ (g' : Fin n.succ) (f' : Fin n.succ), S'.val = P g' + P! f' P! f' = P! f + (S.val (oddShiftSnd j) - S.val (oddShiftFst j)) basis!AsCharges j g' = g