Translations on space #
We define translations on space, and how translations act on distributions. Translations for part of the Poincaré group.
noncomputable instance
Space.instVAddEuclideanSpaceRealFin
{d : ℕ}
:
VAdd (EuclideanSpace ℝ (Fin d)) (Space d)
Equations
- Space.instVAddEuclideanSpaceRealFin = { vadd := fun (v : EuclideanSpace ℝ (Fin d)) (s : Space d) => v + s }
noncomputable instance
Space.instAddActionEuclideanSpaceRealFin
{d : ℕ}
:
AddAction (EuclideanSpace ℝ (Fin d)) (Space d)
Equations
- Space.instAddActionEuclideanSpaceRealFin = { toVAdd := Space.instVAddEuclideanSpaceRealFin, zero_vadd := ⋯, add_vadd := ⋯ }
Translations of distributions #
noncomputable def
Space.translateSchwartz
{X : Type u_3}
[NormedAddCommGroup X]
[NormedSpace ℝ X]
{d : ℕ}
(a : EuclideanSpace ℝ (Fin d))
:
The continuous linear map translating Schwartz maps.
Equations
Instances For
@[simp]
theorem
Space.translateSchwartz_apply
{X : Type u_3}
[NormedAddCommGroup X]
[NormedSpace ℝ X]
{d : ℕ}
(a : EuclideanSpace ℝ (Fin d))
(η : SchwartzMap (Space d) X)
(x : Space d)
:
theorem
Space.translateSchwartz_coe_eq
{X : Type u_3}
[NormedAddCommGroup X]
[NormedSpace ℝ X]
{d : ℕ}
(a : EuclideanSpace ℝ (Fin d))
(η : SchwartzMap (Space d) X)
:
noncomputable def
Space.translateD
{X : Type}
[NormedAddCommGroup X]
[NormedSpace ℝ X]
{d : ℕ}
(a : EuclideanSpace ℝ (Fin d))
:
The continuous linear map translating distributions.
Equations
- Space.translateD a = { toFun := fun (T : (Space d)→d[ℝ] X) => ContinuousLinearMap.comp T (Space.translateSchwartz (-a)), map_add' := ⋯, map_smul' := ⋯ }
Instances For
theorem
Space.translateD_apply
{X : Type}
[NormedAddCommGroup X]
[NormedSpace ℝ X]
{d : ℕ}
(a : EuclideanSpace ℝ (Fin d))
(T : (Space d)→d[ℝ] X)
(η : SchwartzMap (Space d) ℝ)
:
@[simp]
theorem
Space.translateD_ofFunction
{X : Type}
[NormedAddCommGroup X]
[NormedSpace ℝ X]
{d : ℕ}
(a : EuclideanSpace ℝ (Fin d.succ))
(f : Space d.succ → X)
(hf : Distribution.IsDistBounded f)
(hae : MeasureTheory.AEStronglyMeasurable f MeasureTheory.volume)
:
(translateD a) (Distribution.ofFunction f hf hae) = Distribution.ofFunction (fun (x : EuclideanSpace ℝ (Fin d.succ)) => f (x - a)) ⋯ ⋯
@[simp]
theorem
Space.distDiv_translateD
{d : ℕ}
(a : EuclideanSpace ℝ (Fin d))
(T : (Space d)→d[ℝ] EuclideanSpace ℝ (Fin d))
: