Gradient of functions and distributions on Space d #
i. Overview #
This module defines and proves basic properties of the gradient operator
on functions from Space d to ℝ and on distributions from Space d to ℝ.
The gradient operator returns a vector field whose components are the partial derivatives of the input function with respect to each spatial coordinate.
ii. Key results #
grad: The gradient operator on functions fromSpace dtoℝ.distGrad: The gradient operator on distributions fromSpace dtoℝ.
iii. Table of contents #
- A. The gradient of functions on
Space d- A.1. Gradient of the zero function
- A.2. Gradient distributes over addition
- A.3. Gradient of a constant function
- A.4. Gradient distributes over scalar multiplication
- A.5. Gradient distributes over negation
- A.6. Expansion in terms of basis vectors
- A.7. Components of the gradient
- A.8. Inner product with a gradient
- A.9. Gradient is equal to
gradientfrom Mathlib - A.10. Value of gradient in the direction of the position vector
- A.11. Gradient of the norm squared function
- A.12. Gradient of the inner product function
- A.13. Integrability with bounded functions
- B. Gradient of distributions
- B.1. The definition
- B.2. The gradient of inner products
- B.3. The gradient as a sum over basis vectors
- B.4. The underlying function of the gradient distribution
- B.5. The gradient applied to a Schwartz function
iv. References #
The vector calculus operator grad.
Equations
- Space.«term∇» = Lean.ParserDescr.node `Space.«term∇» 1024 (Lean.ParserDescr.symbol "∇")
Instances For
A.1. Gradient of the zero function #
A.2. Gradient distributes over addition #
theorem
Space.grad_add
{d : ℕ}
(f1 f2 : Space d → ℝ)
(hf1 : Differentiable ℝ f1)
(hf2 : Differentiable ℝ f2)
:
A.3. Gradient of a constant function #
A.4. Gradient distributes over scalar multiplication #
A.5. Gradient distributes over negation #
A.6. Expansion in terms of basis vectors #
A.7. Components of the gradient #
A.8. Inner product with a gradient #
A.10. Value of gradient in the direction of the position vector #
A.11. Gradient of the norm squared function #
A.12. Gradient of the inner product function #
A.13. Integrability with bounded functions #
theorem
Space.integrable_isDistBounded_inner_grad_schwartzMap
{dm1 : ℕ}
{f : Space dm1.succ → EuclideanSpace ℝ (Fin dm1.succ)}
(hf : Distribution.IsDistBounded f)
(hae : MeasureTheory.AEStronglyMeasurable (fun (x : Space dm1.succ) => f x) MeasureTheory.volume)
(η : SchwartzMap (EuclideanSpace ℝ (Fin dm1.succ)) ℝ)
:
MeasureTheory.Integrable (fun (x : Space dm1.succ) => inner ℝ (f x) (grad (⇑η) x)) MeasureTheory.volume
theorem
Space.integrable_isDistBounded_inner_grad_schwartzMap_spherical
{dm1 : ℕ}
{f : Space dm1.succ → EuclideanSpace ℝ (Fin dm1.succ)}
(hf : Distribution.IsDistBounded f)
(hae : MeasureTheory.AEStronglyMeasurable (fun (x : Space dm1.succ) => f x) MeasureTheory.volume)
(η : SchwartzMap (EuclideanSpace ℝ (Fin dm1.succ)) ℝ)
:
MeasureTheory.Integrable
((fun (x : ↑{0}ᶜ) => inner ℝ (f ↑x) (grad ⇑η ↑x)) ∘ ⇑(homeomorphUnitSphereProd (Space dm1.succ)).symm)
(MeasureTheory.volume.toSphere.prod
(MeasureTheory.Measure.volumeIoiPow (Module.finrank ℝ (EuclideanSpace ℝ (Fin dm1.succ)) - 1)))
B. Gradient of distributions #
B.1. The definition #
The gradient of a distribution (Space d) →d[ℝ] ℝ as a distribution
(Space d) →d[ℝ] (EuclideanSpace ℝ (Fin d)).
Equations
- One or more equations did not get rendered due to their size.
Instances For
B.2. The gradient of inner products #
theorem
Space.distGrad_inner_eq
{d : ℕ}
(f : (Space d)→d[ℝ] ℝ)
(η : SchwartzMap (Space d) ℝ)
(y : EuclideanSpace ℝ (Fin d))
: