Distributions from bounded functions #
In this module we define distributions from functions f : EuclideanSpace ℝ (Fin d.succ) → F
whose norm is bounded by c1 * ‖x‖ ^ (-d : ℝ) + c2 * ‖x‖ ^ n
for some constants c1
, c2
and n
.
This gives a convenient way to construct distributions from functions, without needing to reference the underlying Schwartz maps.
Key definition #
ofFunction
: Creates a distribution from af
satisfyingIsDistBounded f
.
def
Distribution.ofFunction
{F : Type}
[NormedAddCommGroup F]
[NormedSpace ℝ F]
{dm1 : ℕ}
(f : EuclideanSpace ℝ (Fin dm1.succ) → F)
(hf : IsDistBounded f)
(hae : MeasureTheory.AEStronglyMeasurable (fun (x : EuclideanSpace ℝ (Fin dm1.succ)) => f x) MeasureTheory.volume)
:
A distribution (EuclideanSpace ℝ (Fin 3)) →d[ℝ] F
from a function
f : EuclideanSpace ℝ (Fin 3) → F
bounded by c1 * ‖x‖ ^ (-2 : ℝ) + c2 * ‖x‖ ^ n
.
Equations
- Distribution.ofFunction f hf hae = SchwartzMap.mkCLMtoNormedSpace (fun (η : SchwartzMap (EuclideanSpace ℝ (Fin dm1.succ)) ℝ) => ∫ (x : EuclideanSpace ℝ (Fin dm1.succ)), η x • f x) ⋯ ⋯ ⋯
Instances For
theorem
Distribution.ofFunction_apply
{F : Type}
[NormedAddCommGroup F]
[NormedSpace ℝ F]
{dm1 : ℕ}
(f : EuclideanSpace ℝ (Fin dm1.succ) → F)
(hf : IsDistBounded f)
(hae : MeasureTheory.AEStronglyMeasurable (fun (x : EuclideanSpace ℝ (Fin dm1.succ)) => f x) MeasureTheory.volume)
(η : SchwartzMap (EuclideanSpace ℝ (Fin dm1.succ)) ℝ)
:
@[simp]
theorem
Distribution.ofFunction_zero_eq_zero
{F : Type}
[NormedAddCommGroup F]
[NormedSpace ℝ F]
{dm1 : ℕ}
:
theorem
Distribution.ofFunction_smul
{F : Type}
[NormedAddCommGroup F]
[NormedSpace ℝ F]
{dm1 : ℕ}
(f : EuclideanSpace ℝ (Fin dm1.succ) → F)
(hf : IsDistBounded f)
(hae : MeasureTheory.AEStronglyMeasurable (fun (x : EuclideanSpace ℝ (Fin dm1.succ)) => f x) MeasureTheory.volume)
(c : ℝ)
:
theorem
Distribution.ofFunction_smul_fun
{F : Type}
[NormedAddCommGroup F]
[NormedSpace ℝ F]
{dm1 : ℕ}
(f : EuclideanSpace ℝ (Fin dm1.succ) → F)
(hf : IsDistBounded f)
(hae : MeasureTheory.AEStronglyMeasurable (fun (x : EuclideanSpace ℝ (Fin dm1.succ)) => f x) MeasureTheory.volume)
(c : ℝ)
:
theorem
Distribution.ofFunction_inner
{dm1 n : ℕ}
(f : EuclideanSpace ℝ (Fin dm1.succ) → EuclideanSpace ℝ (Fin n))
(hf : IsDistBounded f)
(hae : MeasureTheory.AEStronglyMeasurable (fun (x : EuclideanSpace ℝ (Fin dm1.succ)) => f x) MeasureTheory.volume)
(η : SchwartzMap (EuclideanSpace ℝ (Fin dm1.succ)) ℝ)
(y : EuclideanSpace ℝ (Fin n))
: