PhysLean Documentation

PhysLean.Mathematics.Distribution.Function.OfFunction

Distributions from bounded functions #

In this module we define distributions from functions f : EuclideanSpace ℝ (Fin d.succ) → F whose norm is bounded by c1 * ‖x‖ ^ (-d : ℝ) + c2 * ‖x‖ ^ n for some constants c1, c2 and n.

This gives a convenient way to construct distributions from functions, without needing to reference the underlying Schwartz maps.

Key definition #

A distribution (EuclideanSpace ℝ (Fin 3)) →d[ℝ] F from a function f : EuclideanSpace ℝ (Fin 3) → F bounded by c1 * ‖x‖ ^ (-2 : ℝ) + c2 * ‖x‖ ^ n.

Equations
Instances For
    @[simp]
    theorem Distribution.ofFunction_zero_eq_zero {F : Type} [NormedAddCommGroup F] [NormedSpace F] {dm1 : } :
    ofFunction (fun (x : EuclideanSpace (Fin (dm1 + 1))) => 0) = 0
    theorem Distribution.ofFunction_smul_fun {F : Type} [NormedAddCommGroup F] [NormedSpace F] {dm1 : } (f : EuclideanSpace (Fin dm1.succ)F) (hf : IsDistBounded f) (hae : MeasureTheory.AEStronglyMeasurable (fun (x : EuclideanSpace (Fin dm1.succ)) => f x) MeasureTheory.volume) (c : ) :
    ofFunction (fun (x : EuclideanSpace (Fin dm1.succ)) => c f x) = c ofFunction f hf hae