Bounded functions for distributions #
In this module we define the property IsDistBounded f
for a function f
.
It says that f
is bounded by a finite sum of terms of the form c * ‖x + g‖ ^ p
for
constants c
, g
and -d ≤ p
where d
is the dimension of the space minus 1.
We prove a number of properties of these functions, inparticular that they are integrable when multiplied by a Schwartz map. This allows us to define distributions from such functions.
IsBounded #
def
Distribution.IsDistBounded
{F : Type}
[NormedAddCommGroup F]
{dm1 : ℕ}
(f : EuclideanSpace ℝ (Fin dm1.succ) → F)
:
The boundedness condition on a function EuclideanSpace ℝ (Fin dm1.succ) → F
for it to form a distribution.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
Distribution.IsDistBounded.add
{F : Type}
[NormedAddCommGroup F]
{dm1 : ℕ}
{f g : EuclideanSpace ℝ (Fin dm1.succ) → F}
(hf : IsDistBounded f)
(hg : IsDistBounded g)
:
IsDistBounded (f + g)
theorem
Distribution.IsDistBounded.const_smul
{F : Type}
[NormedAddCommGroup F]
{dm1 : ℕ}
[NormedSpace ℝ F]
{f : EuclideanSpace ℝ (Fin dm1.succ) → F}
(hf : IsDistBounded f)
(c : ℝ)
:
IsDistBounded (c • f)
theorem
Distribution.IsDistBounded.pi_comp
{dm1 n : ℕ}
{f : EuclideanSpace ℝ (Fin dm1.succ) → EuclideanSpace ℝ (Fin n)}
(hf : IsDistBounded f)
(j : Fin n)
:
IsDistBounded fun (x : EuclideanSpace ℝ (Fin dm1.succ)) => f x j
theorem
Distribution.IsDistBounded.comp_add_right
{F : Type}
[NormedAddCommGroup F]
{dm1 : ℕ}
{f : EuclideanSpace ℝ (Fin dm1.succ) → F}
(hf : IsDistBounded f)
(c : EuclideanSpace ℝ (Fin dm1.succ))
:
IsDistBounded fun (x : EuclideanSpace ℝ (Fin dm1.succ)) => f (x + c)
theorem
Distribution.IsDistBounded.const_mul_fun
{dm1 : ℕ}
{f : EuclideanSpace ℝ (Fin dm1.succ) → ℝ}
(hf : IsDistBounded f)
(c : ℝ)
:
IsDistBounded fun (x : EuclideanSpace ℝ (Fin dm1.succ)) => c * f x
theorem
Distribution.IsDistBounded.congr
{F F' : Type}
[NormedAddCommGroup F]
[NormedAddCommGroup F']
{dm1 : ℕ}
{f : EuclideanSpace ℝ (Fin dm1.succ) → F}
{g : EuclideanSpace ℝ (Fin dm1.succ) → F'}
(hf : IsDistBounded f)
(hfg : ∀ (x : EuclideanSpace ℝ (Fin dm1.succ)), ‖g x‖ = ‖f x‖)
:
theorem
Distribution.IsDistBounded.mono
{F F' : Type}
[NormedAddCommGroup F]
[NormedAddCommGroup F']
{dm1 : ℕ}
{f : EuclideanSpace ℝ (Fin dm1.succ) → F}
{g : EuclideanSpace ℝ (Fin dm1.succ) → F'}
(hf : IsDistBounded f)
(hfg : ∀ (x : EuclideanSpace ℝ (Fin dm1.succ)), ‖g x‖ ≤ ‖f x‖)
:
theorem
Distribution.IsDistBounded.inner_left
{dm1 n : ℕ}
{f : EuclideanSpace ℝ (Fin dm1.succ) → EuclideanSpace ℝ (Fin n)}
(hf : IsDistBounded f)
(y : EuclideanSpace ℝ (Fin n))
:
IsDistBounded fun (x : EuclideanSpace ℝ (Fin dm1.succ)) => inner ℝ (f x) y
Specific cases #
theorem
Distribution.IsDistBounded.const
{F : Type}
[NormedAddCommGroup F]
{dm1 : ℕ}
(f : F)
:
IsDistBounded fun (x : EuclideanSpace ℝ (Fin dm1.succ)) => f
theorem
Distribution.IsDistBounded.pow
{dm1 : ℕ}
(n : ℤ)
(hn : -↑dm1 ≤ n)
:
IsDistBounded fun (x : EuclideanSpace ℝ (Fin dm1.succ)) => ‖x‖ ^ n
theorem
Distribution.IsDistBounded.pow_shift
{dm1 : ℕ}
(n : ℤ)
(g : EuclideanSpace ℝ (Fin dm1.succ))
(hn : -↑dm1 ≤ n)
:
IsDistBounded fun (x : EuclideanSpace ℝ (Fin dm1.succ)) => ‖x - g‖ ^ n
theorem
Distribution.IsDistBounded.inv
{n : ℕ}
:
IsDistBounded fun (x : EuclideanSpace ℝ (Fin n.succ.succ)) => ‖x‖⁻¹
Integrability #
theorem
Distribution.IsDistBounded.schwartzMap_mul_integrable_norm
{F : Type}
[NormedAddCommGroup F]
{dm1 : ℕ}
{η : SchwartzMap (EuclideanSpace ℝ (Fin dm1.succ)) ℝ}
{f : EuclideanSpace ℝ (Fin dm1.succ) → F}
(hf : IsDistBounded f)
(hae : MeasureTheory.AEStronglyMeasurable (fun (x : EuclideanSpace ℝ (Fin dm1.succ)) => f x) MeasureTheory.volume)
:
MeasureTheory.Integrable (fun (x : EuclideanSpace ℝ (Fin dm1.succ)) => ‖η x‖ * ‖f x‖) MeasureTheory.volume
theorem
Distribution.IsDistBounded.schwartzMap_smul_integrable
{F : Type}
[NormedAddCommGroup F]
{dm1 : ℕ}
{η : SchwartzMap (EuclideanSpace ℝ (Fin dm1.succ)) ℝ}
{f : EuclideanSpace ℝ (Fin dm1.succ) → F}
(hf : IsDistBounded f)
[NormedSpace ℝ F]
(hae : MeasureTheory.AEStronglyMeasurable (fun (x : EuclideanSpace ℝ (Fin dm1.succ)) => f x) MeasureTheory.volume)
:
MeasureTheory.Integrable (fun (x : EuclideanSpace ℝ (Fin dm1.succ)) => η x • f x) MeasureTheory.volume
theorem
Distribution.IsDistBounded.schwartzMap_mul_integrable
{dm1 : ℕ}
(f : EuclideanSpace ℝ (Fin dm1.succ) → ℝ)
(hf : IsDistBounded f)
(hae : MeasureTheory.AEStronglyMeasurable (fun (x : EuclideanSpace ℝ (Fin dm1.succ)) => f x) MeasureTheory.volume)
(η : SchwartzMap (EuclideanSpace ℝ (Fin dm1.succ)) ℝ)
:
MeasureTheory.Integrable (fun (x : EuclideanSpace ℝ (Fin dm1.succ)) => η x * f x) MeasureTheory.volume
theorem
Distribution.IsDistBounded.integrable_fderviv_schwartzMap_mul
{dm1 : ℕ}
(f : EuclideanSpace ℝ (Fin dm1.succ) → ℝ)
(hf : IsDistBounded f)
(hae : MeasureTheory.AEStronglyMeasurable (fun (x : EuclideanSpace ℝ (Fin dm1.succ)) => f x) MeasureTheory.volume)
(η : SchwartzMap (EuclideanSpace ℝ (Fin dm1.succ)) ℝ)
(y : EuclideanSpace ℝ (Fin dm1.succ))
:
MeasureTheory.Integrable (fun (x : EuclideanSpace ℝ (Fin dm1.succ)) => (fderiv ℝ (⇑η) x) y * f x) MeasureTheory.volume
Integrability of 1/(1 + ‖x‖) #
theorem
Distribution.intergrable_pow
{dm1 : ℕ}
(p : ℤ)
(r : ℕ)
(p_bound : -↑dm1 ≤ p)
(r_bound : (p + ↑dm1).toNat + invPowMeasure.integrablePower ≤ r)
(v : EuclideanSpace ℝ (Fin dm1.succ))
:
theorem
Distribution.IsDistBounded.norm_inv_mul_exists_pow_integrable
{F : Type}
[NormedAddCommGroup F]
{dm1 : ℕ}
(f : EuclideanSpace ℝ (Fin dm1.succ) → F)
(hf : IsDistBounded f)
(hae : MeasureTheory.AEStronglyMeasurable (fun (x : EuclideanSpace ℝ (Fin dm1.succ)) => f x) MeasureTheory.volume)
: