PhysLean Documentation

PhysLean.Mathematics.Distribution.Function.IsDistBounded

Bounded functions for distributions #

In this module we define the property IsDistBounded f for a function f. It says that f is bounded by a finite sum of terms of the form c * ‖x + g‖ ^ p for constants c, g and -d ≤ p where d is the dimension of the space minus 1.

We prove a number of properties of these functions, inparticular that they are integrable when multiplied by a Schwartz map. This allows us to define distributions from such functions.

IsBounded #

The boundedness condition on a function EuclideanSpace ℝ (Fin dm1.succ) → F for it to form a distribution.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem Distribution.IsDistBounded.pi_comp {dm1 n : } {f : EuclideanSpace (Fin dm1.succ)EuclideanSpace (Fin n)} (hf : IsDistBounded f) (j : Fin n) :
    IsDistBounded fun (x : EuclideanSpace (Fin dm1.succ)) => f x j
    theorem Distribution.IsDistBounded.const_mul_fun {dm1 : } {f : EuclideanSpace (Fin dm1.succ)} (hf : IsDistBounded f) (c : ) :
    IsDistBounded fun (x : EuclideanSpace (Fin dm1.succ)) => c * f x
    theorem Distribution.IsDistBounded.congr {F F' : Type} [NormedAddCommGroup F] [NormedAddCommGroup F'] {dm1 : } {f : EuclideanSpace (Fin dm1.succ)F} {g : EuclideanSpace (Fin dm1.succ)F'} (hf : IsDistBounded f) (hfg : ∀ (x : EuclideanSpace (Fin dm1.succ)), g x = f x) :
    theorem Distribution.IsDistBounded.mono {F F' : Type} [NormedAddCommGroup F] [NormedAddCommGroup F'] {dm1 : } {f : EuclideanSpace (Fin dm1.succ)F} {g : EuclideanSpace (Fin dm1.succ)F'} (hf : IsDistBounded f) (hfg : ∀ (x : EuclideanSpace (Fin dm1.succ)), g x f x) :

    Specific cases #

    theorem Distribution.IsDistBounded.pow {dm1 : } (n : ) (hn : -dm1 n) :
    theorem Distribution.IsDistBounded.pow_shift {dm1 : } (n : ) (g : EuclideanSpace (Fin dm1.succ)) (hn : -dm1 n) :
    IsDistBounded fun (x : EuclideanSpace (Fin dm1.succ)) => x - g ^ n

    Integrability #

    Integrability of 1/(1 + ‖x‖) #

    theorem Distribution.intergrable_pow {dm1 : } (p : ) (r : ) (p_bound : -dm1 p) (r_bound : (p + dm1).toNat + invPowMeasure.integrablePower r) (v : EuclideanSpace (Fin dm1.succ)) :