The constant electric and magnetic fields #
i. Overview #
In this module we define the electromagnetic potential which gives rise to a given constant electric and magnetic field matrix.
We will show that this electromagnetic potential is an extrema of the free-space electromagnetic action.
ii. Key results #
iii. Table of contents #
- A. The definition of the potential
- B. Smoothness of the potential
- C. The scalar potential
- D. The vector potential
- D.1. Time derivative of the vector potential
- D.2. Space derivative of the vector potential
- E. The electric field
- F. The magnetic field
- G. Is extrema
iv. References #
A. The definition of the potential #
The electromagnetic potential which gives rise to a constant electric field E₀
and a constant magnetic field matrix B₀.
noncomputable def
Electromagnetism.ElectromagneticPotential.constantEB
{d : ℕ}
(c : SpeedOfLight)
(E₀ : EuclideanSpace ℝ (Fin d))
(B₀ : Fin d × Fin d → ℝ)
(B₀_antisymm : ∀ (i j : Fin d), B₀ (i, j) = -B₀ (j, i))
:
An electric potential which gives a given constant E-field and B-field.
Equations
- Electromagnetism.ElectromagneticPotential.constantEB c E₀ B₀ B₀_antisymm x (Sum.inl val) = -(1 / c.val) * inner ℝ E₀ (SpaceTime.space x)
- Electromagnetism.ElectromagneticPotential.constantEB c E₀ B₀ B₀_antisymm x (Sum.inr i) = 1 / 2 * ∑ j : Fin d, B₀ (i, j) * SpaceTime.space x j
Instances For
B. Smoothness of the potential #
The potential is smooth.
C. The scalar potential #
The scalar potential of the electromagnetic potential is given by -⟪E₀, x⟫.
theorem
Electromagnetism.ElectromagneticPotential.constantEB_scalarPotential
{d : ℕ}
{c : SpeedOfLight}
{E₀ : EuclideanSpace ℝ (Fin d)}
{B₀ : Fin d × Fin d → ℝ}
{B₀_antisymm : ∀ (i j : Fin d), B₀ (i, j) = -B₀ (j, i)}
:
scalarPotential c (constantEB c E₀ B₀ B₀_antisymm) = fun (x : Time) (x : EuclideanSpace ℝ (Fin d)) => -inner ℝ E₀ x
D. The vector potential #
The vector potential of the electromagnetic potential is (1 / 2) * ∑ j, B₀ (i, j) * x j .
D.1. Time derivative of the vector potential #
D.2. Space derivative of the vector potential #
theorem
Electromagnetism.ElectromagneticPotential.constantEB_vectorPotential_space_deriv
{d : ℕ}
{c : SpeedOfLight}
{E₀ : EuclideanSpace ℝ (Fin d)}
{B₀ : Fin d × Fin d → ℝ}
{B₀_antisymm : ∀ (i j : Fin d), B₀ (i, j) = -B₀ (j, i)}
(t : Time)
(x : Space d)
(i j : Fin d)
:
Space.deriv i (fun (x : Space d) => vectorPotential c (constantEB c E₀ B₀ B₀_antisymm) t x j) x = 1 / 2 * B₀ (j, i)