PhysLean Documentation

PhysLean.Electromagnetism.Vacuum.Constant

The constant electric and magnetic fields #

i. Overview #

In this module we define the electromagnetic potential which gives rise to a given constant electric and magnetic field matrix.

We will show that this electromagnetic potential is an extrema of the free-space electromagnetic action.

ii. Key results #

iii. Table of contents #

iv. References #

A. The definition of the potential #

The electromagnetic potential which gives rise to a constant electric field E₀ and a constant magnetic field matrix B₀.

noncomputable def Electromagnetism.ElectromagneticPotential.constantEB {d : } (c : SpeedOfLight) (E₀ : EuclideanSpace (Fin d)) (B₀ : Fin d × Fin d) (B₀_antisymm : ∀ (i j : Fin d), B₀ (i, j) = -B₀ (j, i)) :

An electric potential which gives a given constant E-field and B-field.

Equations
Instances For

    B. Smoothness of the potential #

    The potential is smooth.

    theorem Electromagnetism.ElectromagneticPotential.constantEB_smooth {d : } {c : SpeedOfLight} {E₀ : EuclideanSpace (Fin d)} {B₀ : Fin d × Fin d} {B₀_antisymm : ∀ (i j : Fin d), B₀ (i, j) = -B₀ (j, i)} :
    ContDiff (↑) (constantEB c E₀ B₀ B₀_antisymm)

    C. The scalar potential #

    The scalar potential of the electromagnetic potential is given by -⟪E₀, x⟫.

    theorem Electromagnetism.ElectromagneticPotential.constantEB_scalarPotential {d : } {c : SpeedOfLight} {E₀ : EuclideanSpace (Fin d)} {B₀ : Fin d × Fin d} {B₀_antisymm : ∀ (i j : Fin d), B₀ (i, j) = -B₀ (j, i)} :
    scalarPotential c (constantEB c E₀ B₀ B₀_antisymm) = fun (x : Time) (x : EuclideanSpace (Fin d)) => -inner E₀ x

    D. The vector potential #

    The vector potential of the electromagnetic potential is (1 / 2) * ∑ j, B₀ (i, j) * x j .

    theorem Electromagnetism.ElectromagneticPotential.constantEB_vectorPotential {d : } {c : SpeedOfLight} {E₀ : EuclideanSpace (Fin d)} {B₀ : Fin d × Fin d} {B₀_antisymm : ∀ (i j : Fin d), B₀ (i, j) = -B₀ (j, i)} :
    vectorPotential c (constantEB c E₀ B₀ B₀_antisymm) = fun (x : Time) (x : Space d) (i : Fin d) => 1 / 2 * j : Fin d, B₀ (i, j) * x j

    D.1. Time derivative of the vector potential #

    @[simp]
    theorem Electromagnetism.ElectromagneticPotential.constantEB_vectorPotential_time_deriv {d : } {c : SpeedOfLight} {E₀ : EuclideanSpace (Fin d)} {B₀ : Fin d × Fin d} {B₀_antisymm : ∀ (i j : Fin d), B₀ (i, j) = -B₀ (j, i)} (t : Time) (x : Space d) :
    Time.deriv (fun (x_1 : Time) => vectorPotential c (constantEB c E₀ B₀ B₀_antisymm) x_1 x) t = 0

    D.2. Space derivative of the vector potential #

    theorem Electromagnetism.ElectromagneticPotential.constantEB_vectorPotential_space_deriv {d : } {c : SpeedOfLight} {E₀ : EuclideanSpace (Fin d)} {B₀ : Fin d × Fin d} {B₀_antisymm : ∀ (i j : Fin d), B₀ (i, j) = -B₀ (j, i)} (t : Time) (x : Space d) (i j : Fin d) :
    Space.deriv i (fun (x : Space d) => vectorPotential c (constantEB c E₀ B₀ B₀_antisymm) t x j) x = 1 / 2 * B₀ (j, i)

    E. The electric field #

    @[simp]
    theorem Electromagnetism.ElectromagneticPotential.constantEB_electricField {d : } {c : SpeedOfLight} {E₀ : EuclideanSpace (Fin d)} {B₀ : Fin d × Fin d} {B₀_antisymm : ∀ (i j : Fin d), B₀ (i, j) = -B₀ (j, i)} :
    electricField c (constantEB c E₀ B₀ B₀_antisymm) = fun (x : Time) (x : Space d) => E₀

    F. The magnetic field #

    @[simp]
    theorem Electromagnetism.ElectromagneticPotential.constantEB_magneticFieldMatrix {d : } {c : SpeedOfLight} {E₀ : EuclideanSpace (Fin d)} {B₀ : Fin d × Fin d} {B₀_antisymm : ∀ (i j : Fin d), B₀ (i, j) = -B₀ (j, i)} :
    magneticFieldMatrix c (constantEB c E₀ B₀ B₀_antisymm) = fun (x : Time) (x : Space d) => B₀

    G. Is extrema #

    theorem Electromagnetism.ElectromagneticPotential.constantEB_isExtrema {d : } {𝓕 : FreeSpace} {E₀ : EuclideanSpace (Fin d)} {B₀ : Fin d × Fin d} {B₀_antisymm : ∀ (i j : Fin d), B₀ (i, j) = -B₀ (j, i)} :
    IsExtrema 𝓕 (constantEB 𝓕.c E₀ B₀ B₀_antisymm) 0