The Hamiltonian in electromagnetism #
i. Overview #
In this module we define the canonical momentum and the Hamiltonian for the electromagnetic field in presence of a current density. We prove properties of these quantities, and express the Hamiltonian in terms of the electric and magnetic fields in the case of three spatial dimensions.
ii. Key results #
canonicalMomentum: The canonical momentum for the electromagnetic field in presence of a Lorentz current density.hamiltonian: The Hamiltonian for the electromagnetic field in presence of a Lorentz current density.hamiltonian_eq_electricField_magneticField: The Hamiltonian expressed in terms of the electric and magnetic fields.
iii. Table of contents #
- A. The canonical momentum
- A.1. The canonical momentum in terms of the kinetic term
- A.2. The canonical momentum in terms of the field strength tensor
- A.3. The canonical momentum in terms of the electric field
- B. The Hamiltonian
- B.1. The hamiltonian in terms of the vector potential
- B.2. The hamiltonian in terms of the electric and magnetic fields
iv. References #
A. The canonical momentum #
We define the canonical momentum for the lagrangian
L(A, ∂ A) as gradient of v ↦ L(A + t v, ∂ (A + t v)) - t * L(A + v, ∂(A + v)) at v = 0
This is equivalent to ∂ L/∂ (∂_0 A).
noncomputable def
Electromagnetism.ElectromagneticPotential.canonicalMomentum
{d : ℕ}
(𝓕 : FreeSpace)
(A : ElectromagneticPotential d)
(J : LorentzCurrentDensity d)
:
SpaceTime d → Lorentz.Vector d
The canonical momentum associated with the lagrangian of an electromagnetic potential and a Lorentz current density.
Equations
- One or more equations did not get rendered due to their size.
Instances For
A.1. The canonical momentum in terms of the kinetic term #
theorem
Electromagnetism.ElectromagneticPotential.canonicalMomentum_eq_gradient_kineticTerm
{d : ℕ}
{𝓕 : FreeSpace}
(A : ElectromagneticPotential d)
(hA : ContDiff ℝ 2 A)
(J : LorentzCurrentDensity d)
:
canonicalMomentum 𝓕 A J = fun (x : SpaceTime d) =>
gradient (fun (v : Lorentz.Vector d) => kineticTerm 𝓕 (fun (x : SpaceTime d) => A x + x (Sum.inl 0) • v) x) 0
A.2. The canonical momentum in terms of the field strength tensor #
theorem
Electromagnetism.ElectromagneticPotential.canonicalMomentum_eq
{d : ℕ}
{𝓕 : FreeSpace}
(A : ElectromagneticPotential d)
(hA : ContDiff ℝ 2 A)
(J : LorentzCurrentDensity d)
:
A.3. The canonical momentum in terms of the electric field #
theorem
Electromagnetism.ElectromagneticPotential.canonicalMomentum_eq_electricField
{d : ℕ}
{𝓕 : FreeSpace}
(A : ElectromagneticPotential d)
(hA : ContDiff ℝ 2 A)
(J : LorentzCurrentDensity d)
:
canonicalMomentum 𝓕 A J = fun (x : SpaceTime d) (μ : Fin 1 ⊕ Fin d) =>
match μ with
| Sum.inl 0 => 0
| Sum.inr i => -(1 / (𝓕.μ₀ * 𝓕.c.val)) * electricField 𝓕.c A ((SpaceTime.time 𝓕.c) x) (SpaceTime.space x) i
B. The Hamiltonian #
noncomputable def
Electromagnetism.ElectromagneticPotential.hamiltonian
{d : ℕ}
(𝓕 : FreeSpace)
(A : ElectromagneticPotential d)
(J : LorentzCurrentDensity d)
(x : SpaceTime d)
:
The Hamiltonian associated with an electromagnetic potential and a Lorentz current density.
Equations
- One or more equations did not get rendered due to their size.
Instances For
B.1. The hamiltonian in terms of the vector potential #
theorem
Electromagnetism.ElectromagneticPotential.hamiltonian_eq_electricField_vectorPotential
{d : ℕ}
{𝓕 : FreeSpace}
(A : ElectromagneticPotential d)
(hA : ContDiff ℝ 2 A)
(J : LorentzCurrentDensity d)
(x : SpaceTime d)
:
hamiltonian 𝓕 A J x = -(1 / 𝓕.c.val ^ 2 * 𝓕.μ₀⁻¹) * ∑ i : Fin d,
electricField 𝓕.c A ((SpaceTime.time 𝓕.c) x) (SpaceTime.space x) i * Time.deriv (fun (x_1 : Time) => vectorPotential 𝓕.c A x_1 (SpaceTime.space x)) ((SpaceTime.time 𝓕.c) x) i - lagrangian 𝓕 A J x
theorem
Electromagnetism.ElectromagneticPotential.hamiltonian_eq_electricField_scalarPotential
{d : ℕ}
{𝓕 : FreeSpace}
(A : ElectromagneticPotential d)
(hA : ContDiff ℝ 2 A)
(J : LorentzCurrentDensity d)
(x : SpaceTime d)
:
hamiltonian 𝓕 A J x = 1 / 𝓕.c.val ^ 2 * 𝓕.μ₀⁻¹ * (‖electricField 𝓕.c A ((SpaceTime.time 𝓕.c) x) (SpaceTime.space x)‖ ^ 2 + inner ℝ (electricField 𝓕.c A ((SpaceTime.time 𝓕.c) x) (SpaceTime.space x))
(Space.grad (fun (x_1 : Space d) => scalarPotential 𝓕.c A ((SpaceTime.time 𝓕.c) x) x_1)
(SpaceTime.space x))) - lagrangian 𝓕 A J x
B.2. The hamiltonian in terms of the electric and magnetic fields #
theorem
Electromagnetism.ElectromagneticPotential.hamiltonian_eq_electricField_magneticField
{d : ℕ}
{𝓕 : FreeSpace}
(A : ElectromagneticPotential d)
(hA : ContDiff ℝ 2 A)
(J : LorentzCurrentDensity d)
(x : SpaceTime d)
:
hamiltonian 𝓕 A J x = 1 / 2 * 𝓕.ε₀ * (‖electricField 𝓕.c A ((SpaceTime.time 𝓕.c) x) (SpaceTime.space x)‖ ^ 2 + 𝓕.c.val ^ 2 / 2 * ∑ i : Fin d,
∑ j : Fin d, ‖magneticFieldMatrix 𝓕.c A ((SpaceTime.time 𝓕.c) x) (SpaceTime.space x) (i, j)‖ ^ 2) + 𝓕.ε₀ * inner ℝ (electricField 𝓕.c A ((SpaceTime.time 𝓕.c) x) (SpaceTime.space x))
(Space.grad (fun (x_1 : Space d) => scalarPotential 𝓕.c A ((SpaceTime.time 𝓕.c) x) x_1)
(SpaceTime.space x)) + scalarPotential 𝓕.c A ((SpaceTime.time 𝓕.c) x) (SpaceTime.space x) * LorentzCurrentDensity.chargeDensity 𝓕.c J ((SpaceTime.time 𝓕.c) x) (SpaceTime.space x) - ∑ i : Fin d,
vectorPotential 𝓕.c A ((SpaceTime.time 𝓕.c) x) (SpaceTime.space x) i * LorentzCurrentDensity.currentDensity 𝓕.c J ((SpaceTime.time 𝓕.c) x) (SpaceTime.space x) i