PhysLean Documentation

PhysLean.Relativity.Tensors.RealTensor.Vector.Basic

Lorentz Vectors #

In this module we define Lorentz vectors as real Lorentz tensors with a single up index. We create an API around Lorentz vectors to make working with them as easy as possible.

def Lorentz.Vector (d : := 3) :

Real contravariant Lorentz vector.

Equations
Instances For
    @[simp]
    theorem Lorentz.Vector.apply_smul {d : } (c : ) (v : Vector d) (i : Fin 1 Fin d) :
    (c v) i = c * v i
    @[simp]
    theorem Lorentz.Vector.apply_add {d : } (v w : Vector d) (i : Fin 1 Fin d) :
    (v + w) i = v i + w i
    @[simp]
    theorem Lorentz.Vector.apply_sub {d : } (v w : Vector d) (i : Fin 1 Fin d) :
    (v - w) i = v i - w i
    theorem Lorentz.Vector.apply_sum {d : } {ι : Type} [Fintype ι] (f : ιVector d) (i : Fin 1 Fin d) :
    (∑ j : ι, f j) i = j : ι, f j i
    @[simp]
    theorem Lorentz.Vector.neg_apply {d : } (v : Vector d) (i : Fin 1 Fin d) :
    (-v) i = -v i
    @[simp]
    theorem Lorentz.Vector.zero_apply {d : } (i : Fin 1 Fin d) :
    0 i = 0

    The continuous linear map from a Lorentz vector to one of its coordinates.

    Equations
    Instances For
      theorem Lorentz.Vector.coordCLM_apply {d : } (i : Fin 1 Fin d) (v : Vector d) :
      (coordCLM i) v = v i
      @[simp]
      theorem Lorentz.Vector.fderiv_apply {d : } (μ : Fin 1 Fin d) (x : Vector d) :
      fderiv (fun (v : Vector d) => v μ) x = coordCLM μ

      Tensorial #

      The equivalence between the type of indices of a Lorentz vector and Fin 1 ⊕ Fin d.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        Equations
        • One or more equations did not get rendered due to their size.

        Basis #

        The basis on Vector d indexed by Fin 1 ⊕ Fin d.

        Equations
        Instances For
          @[simp]
          theorem Lorentz.Vector.basis_apply {d : } (μ ν : Fin 1 Fin d) :
          basis μ ν = if μ = ν then 1 else 0
          theorem Lorentz.Vector.basis_repr_apply {d : } (p : Vector d) (μ : Fin 1 Fin d) :
          (basis.repr p) μ = p μ
          theorem Lorentz.Vector.sum_basis_eq_zero_iff {d : } (f : Fin 1 Fin d) :
          μ : Fin 1 Fin d, f μ basis μ = 0 ∀ (μ : Fin 1 Fin d), f μ = 0
          theorem Lorentz.Vector.sum_inl_inr_basis_eq_zero_iff {d : } (f₀ : ) (f : Fin d) :
          f₀ basis (Sum.inl 0) + i : Fin d, f i basis (Sum.inr i) = 0 f₀ = 0 ∀ (i : Fin d), f i = 0

          The action of the Lorentz group #

          theorem Lorentz.Vector.smul_eq_sum {d : } (i : Fin 1 Fin d) (Λ : (LorentzGroup d)) (p : Vector d) :
          (Λ p) i = j : Fin 1 Fin d, Λ i j * p j
          theorem Lorentz.Vector.smul_eq_mulVec {d : } (Λ : (LorentzGroup d)) (p : Vector d) :
          Λ p = (↑Λ).mulVec p
          theorem Lorentz.Vector.smul_add {d : } (Λ : (LorentzGroup d)) (p q : Vector d) :
          Λ (p + q) = Λ p + Λ q
          @[simp]
          theorem Lorentz.Vector.smul_sub {d : } (Λ : (LorentzGroup d)) (p q : Vector d) :
          Λ (p - q) = Λ p - Λ q
          theorem Lorentz.Vector.smul_zero {d : } (Λ : (LorentzGroup d)) :
          Λ 0 = 0
          theorem Lorentz.Vector.smul_neg {d : } (Λ : (LorentzGroup d)) (p : Vector d) :
          Λ -p = -(Λ p)
          theorem Lorentz.Vector.neg_smul {d : } (Λ : (LorentzGroup d)) (p : Vector d) :
          -Λ p = -(Λ p)
          theorem LorentzGroup.eq_of_action_vector_eq {d : } {Λ Λ' : (LorentzGroup d)} (h : ∀ (p : Lorentz.Vector d), Λ p = Λ' p) :
          Λ = Λ'

          The Lorentz action on vectors as a continuous linear map.

          Equations
          Instances For
            theorem Lorentz.Vector.actionCLM_apply {d : } (Λ : (LorentzGroup d)) (p : Vector d) :
            (actionCLM Λ) p = Λ p
            theorem Lorentz.Vector.smul_basis {d : } (Λ : (LorentzGroup d)) (μ : Fin 1 Fin d) :
            Λ basis μ = ν : Fin 1 Fin d, Λ ν μ basis ν

            Spatial part #

            @[reducible, inline]

            Extract spatial components from a Lorentz vector, returning them as a vector in Euclidean space.

            Equations
            Instances For

              The time component #

              @[reducible, inline]

              Extract time component from a Lorentz vector

              Equations
              Instances For

                ## Smoothness

                The structure of a smooth manifold on Vector .

                Equations
                Instances For