Metric for real Lorentz vectors #
The metric ηᵃᵃ
as an element of (Contr d ⊗ Contr d).V
.
Instances For
theorem
Lorentz.preContrMetricVal_expand_tmul
{d : ℕ}
:
preContrMetricVal d = (contrBasis d) (Sum.inl 0) ⊗ₜ[ℝ] (contrBasis d) (Sum.inl 0) - ∑ i : Fin d, (contrBasis d) (Sum.inr i) ⊗ₜ[ℝ] (contrBasis d) (Sum.inr i)
Expansion of preContrMetricVal
into basis.
theorem
Lorentz.preContrMetricVal_expand_tmul_minkowskiMatrix
{d : ℕ}
:
preContrMetricVal d = ∑ i : Fin 1 ⊕ Fin d, minkowskiMatrix i i • (contrBasis d) i ⊗ₜ[ℝ] (contrBasis d) i
The metric ηᵃᵃ
as a morphism 𝟙_ (Rep ℝ (LorentzGroup d)) ⟶ Contr d ⊗ Contr d
,
making its invariance under the action of LorentzGroup d
.
Equations
- Lorentz.preContrMetric d = { hom := ModuleCat.ofHom { toFun := fun (a : ℝ) => a • Lorentz.preContrMetricVal d, map_add' := ⋯, map_smul' := ⋯ }, comm := ⋯ }
Instances For
def
Lorentz.preCoMetricVal
(d : ℕ := 3)
:
↑(CategoryTheory.MonoidalCategoryStruct.tensorObj (Co d) (Co d)).V
The metric ηᵢᵢ
as an element of (Co d ⊗ Co d).V
.
Instances For
The metric ηᵢᵢ
as a morphism 𝟙_ (Rep ℂ (LorentzGroup d))) ⟶ Co d ⊗ Co d
,
making its invariance under the action of LorentzGroup d
.
Equations
- Lorentz.preCoMetric d = { hom := ModuleCat.ofHom { toFun := fun (a : ℝ) => a • Lorentz.preCoMetricVal d, map_add' := ⋯, map_smul' := ⋯ }, comm := ⋯ }
Instances For
Contraction of metrics #
theorem
Lorentz.contrCoContract_apply_metric
{d : ℕ}
:
(CategoryTheory.ConcreteCategory.hom (β_ (Contr d) (Co d)).hom.hom)
((CategoryTheory.ConcreteCategory.hom
(CategoryTheory.MonoidalCategoryStruct.whiskerLeft (Contr d).V
(CategoryTheory.MonoidalCategoryStruct.leftUnitor (Co d).V).hom))
((CategoryTheory.ConcreteCategory.hom
(CategoryTheory.MonoidalCategoryStruct.whiskerLeft (Contr d).V
(CategoryTheory.MonoidalCategoryStruct.whiskerRight contrCoContract.hom (Co d).V)))
((CategoryTheory.ConcreteCategory.hom
(CategoryTheory.MonoidalCategoryStruct.whiskerLeft (Contr d).V
(CategoryTheory.MonoidalCategoryStruct.associator (Contr d).V (Co d).V (Co d).V).inv))
((CategoryTheory.ConcreteCategory.hom
(CategoryTheory.MonoidalCategoryStruct.associator (Contr d).V (Contr d).V
(CategoryTheory.MonoidalCategoryStruct.tensorObj (Co d).V (Co d).V)).hom)
((CategoryTheory.ConcreteCategory.hom (preContrMetric d).hom) 1 ⊗ₜ[ℝ] (CategoryTheory.ConcreteCategory.hom (preCoMetric d).hom) 1))))) = (CategoryTheory.ConcreteCategory.hom (preCoContrUnit d).hom) 1
theorem
Lorentz.coContrContract_apply_metric
{d : ℕ}
:
(CategoryTheory.ConcreteCategory.hom (β_ (Co d) (Contr d)).hom.hom)
((CategoryTheory.ConcreteCategory.hom
(CategoryTheory.MonoidalCategoryStruct.whiskerLeft (Co d).V
(CategoryTheory.MonoidalCategoryStruct.leftUnitor (Contr d).V).hom))
((CategoryTheory.ConcreteCategory.hom
(CategoryTheory.MonoidalCategoryStruct.whiskerLeft (Co d).V
(CategoryTheory.MonoidalCategoryStruct.whiskerRight coContrContract.hom (Contr d).V)))
((CategoryTheory.ConcreteCategory.hom
(CategoryTheory.MonoidalCategoryStruct.whiskerLeft (Co d).V
(CategoryTheory.MonoidalCategoryStruct.associator (Co d).V (Contr d).V (Contr d).V).inv))
((CategoryTheory.ConcreteCategory.hom
(CategoryTheory.MonoidalCategoryStruct.associator (Co d).V (Co d).V
(CategoryTheory.MonoidalCategoryStruct.tensorObj (Contr d).V (Contr d).V)).hom)
((CategoryTheory.ConcreteCategory.hom (preCoMetric d).hom) 1 ⊗ₜ[ℝ] (CategoryTheory.ConcreteCategory.hom (preContrMetric d).hom) 1))))) = (CategoryTheory.ConcreteCategory.hom (preContrCoUnit d).hom) 1