Unit for complex Lorentz vectors #
def
Lorentz.preContrCoUnitVal
(d : ℕ := 3)
:
↑(CategoryTheory.MonoidalCategoryStruct.tensorObj (Contr d) (Co d)).V
The contra-co unit for complex lorentz vectors. Usually denoted δⁱᵢ
.
Equations
Instances For
Expansion of preContrCoUnitVal
into basis.
The contra-co unit for complex lorentz vectors as a morphism
𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ complexContr ⊗ complexCo
, manifesting the invariance under
the SL(2, ℂ)
action.
Equations
- Lorentz.preContrCoUnit d = { hom := ModuleCat.ofHom { toFun := fun (a : ℝ) => a • Lorentz.preContrCoUnitVal d, map_add' := ⋯, map_smul' := ⋯ }, comm := ⋯ }
Instances For
def
Lorentz.preCoContrUnitVal
(d : ℕ := 3)
:
↑(CategoryTheory.MonoidalCategoryStruct.tensorObj (Co d) (Contr d)).V
The co-contra unit for complex lorentz vectors. Usually denoted δᵢⁱ
.
Equations
Instances For
Expansion of preCoContrUnitVal
into basis.
The co-contra unit for complex lorentz vectors as a morphism
𝟙_ (Rep ℝ (LorentzGroup d)) ⟶ Co d ⊗ Contr d
, manifesting the invariance under
the LorentzGroup d
action.
Equations
- Lorentz.preCoContrUnit d = { hom := ModuleCat.ofHom { toFun := fun (a : ℝ) => a • Lorentz.preCoContrUnitVal d, map_add' := ⋯, map_smul' := ⋯ }, comm := ⋯ }
Instances For
Contraction of the units #
theorem
Lorentz.contr_preContrCoUnit
{d : ℕ}
(x : ↑(Co d).V)
:
(CategoryTheory.ConcreteCategory.hom (CategoryTheory.MonoidalCategoryStruct.leftUnitor (Co d)).hom.hom)
((CategoryTheory.ConcreteCategory.hom
(CategoryTheory.MonoidalCategoryStruct.whiskerRight coContrContract (Co d)).hom)
((CategoryTheory.ConcreteCategory.hom
(CategoryTheory.MonoidalCategoryStruct.associator (Co d) (Contr d) (Co d)).inv.hom)
(x ⊗ₜ[ℝ] (CategoryTheory.ConcreteCategory.hom (preContrCoUnit d).hom) 1))) = x
Contraction on the right with contrCoUnit
does nothing.
theorem
Lorentz.contr_preCoContrUnit
{d : ℕ}
(x : ↑(Contr d).V)
:
(CategoryTheory.ConcreteCategory.hom (CategoryTheory.MonoidalCategoryStruct.leftUnitor (Contr d)).hom.hom)
((CategoryTheory.ConcreteCategory.hom
(CategoryTheory.MonoidalCategoryStruct.whiskerRight contrCoContract (Contr d)).hom)
((CategoryTheory.ConcreteCategory.hom
(CategoryTheory.MonoidalCategoryStruct.associator (Contr d) (Co d) (Contr d)).inv.hom)
(x ⊗ₜ[ℝ] (CategoryTheory.ConcreteCategory.hom (preCoContrUnit d).hom) 1))) = x
Contraction on the right with coContrUnit
.
Symmetry properties of the units #
theorem
Lorentz.preContrCoUnit_symm
{d : ℕ}
:
(CategoryTheory.ConcreteCategory.hom (preContrCoUnit d).hom) 1 = (CategoryTheory.ConcreteCategory.hom
(CategoryTheory.MonoidalCategoryStruct.whiskerLeft (Contr d) (CategoryTheory.CategoryStruct.id (Co d))).hom)
((CategoryTheory.ConcreteCategory.hom (β_ (Co d) (Contr d)).hom.hom)
((CategoryTheory.ConcreteCategory.hom (preCoContrUnit d).hom) 1))
theorem
Lorentz.preCoContrUnit_symm
{d : ℕ}
:
(CategoryTheory.ConcreteCategory.hom (preCoContrUnit d).hom) 1 = (CategoryTheory.ConcreteCategory.hom
(CategoryTheory.MonoidalCategoryStruct.whiskerLeft (Co d) (CategoryTheory.CategoryStruct.id (Contr d))).hom)
((CategoryTheory.ConcreteCategory.hom (β_ (Contr d) (Co d)).hom.hom)
((CategoryTheory.ConcreteCategory.hom (preContrCoUnit d).hom) 1))