Tensor products of two real Lorentz vectors #
Equivalence of Contr ⊗ Contr
to (1 + d) x (1 + d)
real matrices.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equivalence of Contr d ⊗ Co d
to (1 + d) x (1 + d)
real matrices.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equivalence of Co d ⊗ Contr d
to (1 + d) x (1 + d)
real matrices.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Group actions #
theorem
Lorentz.contrContrToMatrixRe_ρ
{d : ℕ}
(v : ↑(CategoryTheory.MonoidalCategoryStruct.tensorObj (Contr d) (Contr d)).V)
(M : ↑(LorentzGroup d))
:
contrContrToMatrixRe ((TensorProduct.map ((Contr d).ρ M) ((Contr d).ρ M)) v) = ↑M * contrContrToMatrixRe v * (↑M).transpose
theorem
Lorentz.coCoToMatrixRe_ρ
{d : ℕ}
(v : ↑(CategoryTheory.MonoidalCategoryStruct.tensorObj (Co d) (Co d)).V)
(M : ↑(LorentzGroup d))
:
coCoToMatrixRe ((TensorProduct.map ((Co d).ρ M) ((Co d).ρ M)) v) = (↑M)⁻¹.transpose * coCoToMatrixRe v * ↑M⁻¹
theorem
Lorentz.contrCoToMatrixRe_ρ
{d : ℕ}
(v : ↑(CategoryTheory.MonoidalCategoryStruct.tensorObj (Contr d) (Co d)).V)
(M : ↑(LorentzGroup d))
:
contrCoToMatrixRe ((TensorProduct.map ((Contr d).ρ M) ((Co d).ρ M)) v) = ↑M * contrCoToMatrixRe v * (↑M)⁻¹
theorem
Lorentz.coContrToMatrixRe_ρ
{d : ℕ}
(v : ↑(CategoryTheory.MonoidalCategoryStruct.tensorObj (Co d) (Contr d)).V)
(M : ↑(LorentzGroup d))
:
coContrToMatrixRe ((TensorProduct.map ((Co d).ρ M) ((Contr d).ρ M)) v) = (↑M)⁻¹.transpose * coContrToMatrixRe v * (↑M).transpose
The symm version of the group actions. #
theorem
Lorentz.contrContrToMatrixRe_ρ_symm
{d : ℕ}
(v : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ)
(M : ↑(LorentzGroup d))
:
(TensorProduct.map ((Contr d).ρ M) ((Contr d).ρ M)) (contrContrToMatrixRe.symm v) = contrContrToMatrixRe.symm (↑M * v * (↑M).transpose)
theorem
Lorentz.contrCoToMatrixRe_ρ_symm
{d : ℕ}
(v : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ)
(M : ↑(LorentzGroup d))
:
(TensorProduct.map ((Contr d).ρ M) ((Co d).ρ M)) (contrCoToMatrixRe.symm v) = contrCoToMatrixRe.symm (↑M * v * (↑M)⁻¹)