PhysLean Documentation

PhysLean.Relativity.PauliMatrices.ToTensor

Pauli matrices as a tensor #

Tersorial structure #

The tensorial structure on the type Fin 1 ⊕ Fin 3 → Matrix (Fin 2) (Fin 2) ℂ and properties thereof.

The equivalence between the type of indices of a [.up, .upL, .upR] tensor and (Fin 1 ⊕ Fin 3) × Fin 2 × Fin 2.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    Pauli matrices as a tensor #

    The Pauli matarices as a tensor toTensor pauliMatrix in ℂT[.up, .upL, .upR].

    Equations
    Instances For
      theorem PauliMatrix.toTensor_basis_expand :
      TensorSpecies.Tensorial.toTensor pauliMatrix = ((((((((TensorSpecies.Tensor.basis ![complexLorentzTensor.Color.up, complexLorentzTensor.Color.upL, complexLorentzTensor.Color.upR]) fun (x : Fin (Nat.succ 0).succ.succ) => match x with | 0 => 0 | 1 => 0 | 2 => 0) + (TensorSpecies.Tensor.basis ![complexLorentzTensor.Color.up, complexLorentzTensor.Color.upL, complexLorentzTensor.Color.upR]) fun (x : Fin (Nat.succ 0).succ.succ) => match x with | 0 => 0 | 1 => 1 | 2 => 1) + (TensorSpecies.Tensor.basis ![complexLorentzTensor.Color.up, complexLorentzTensor.Color.upL, complexLorentzTensor.Color.upR]) fun (x : Fin (Nat.succ 0).succ.succ) => match x with | 0 => 1 | 1 => 0 | 2 => 1) + (TensorSpecies.Tensor.basis ![complexLorentzTensor.Color.up, complexLorentzTensor.Color.upL, complexLorentzTensor.Color.upR]) fun (x : Fin (Nat.succ 0).succ.succ) => match x with | 0 => 1 | 1 => 1 | 2 => 0) - Complex.I (TensorSpecies.Tensor.basis ![complexLorentzTensor.Color.up, complexLorentzTensor.Color.upL, complexLorentzTensor.Color.upR]) fun (x : Fin (Nat.succ 0).succ.succ) => match x with | 0 => 2 | 1 => 0 | 2 => 1) + Complex.I (TensorSpecies.Tensor.basis ![complexLorentzTensor.Color.up, complexLorentzTensor.Color.upL, complexLorentzTensor.Color.upR]) fun (x : Fin (Nat.succ 0).succ.succ) => match x with | 0 => 2 | 1 => 1 | 2 => 0) + (TensorSpecies.Tensor.basis ![complexLorentzTensor.Color.up, complexLorentzTensor.Color.upL, complexLorentzTensor.Color.upR]) fun (x : Fin (Nat.succ 0).succ.succ) => match x with | 0 => 3 | 1 => 0 | 2 => 0) - (TensorSpecies.Tensor.basis ![complexLorentzTensor.Color.up, complexLorentzTensor.Color.upL, complexLorentzTensor.Color.upR]) fun (x : Fin (Nat.succ 0).succ.succ) => match x with | 0 => 3 | 1 => 1 | 2 => 1
      theorem PauliMatrix.toTensor_eq_ofRat :
      TensorSpecies.Tensorial.toTensor pauliMatrix = complexLorentzTensor.ofRat fun (b : TensorSpecies.Tensor.ComponentIdx ![complexLorentzTensor.Color.up, complexLorentzTensor.Color.upL, complexLorentzTensor.Color.upR]) => if b 0 = 0 b 1 = b 2 then { fst := 1, snd := 0 } else if b 0 = 1 b 1 b 2 then { fst := 1, snd := 0 } else if b 0 = 2 b 1 = 0 b 2 = 1 then { fst := 0, snd := -1 } else if b 0 = 2 b 1 = 1 b 2 = 0 then { fst := 0, snd := 1 } else if b 0 = 3 b 1 = 0 b 2 = 0 then { fst := 1, snd := 0 } else if b 0 = 3 b 1 = 3 b 2 = 3 then { fst := -1, snd := 0 } else 0

      Variations of the pauli tensor #

      @[reducible, inline]

      The Pauli matrices as the complex Lorentz tensor σ_μ^α^{dot β}.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        The Pauli matrices as the complex Lorentz tensor σ_μ^α^{dot β}.

        Equations
        Instances For
          @[reducible, inline]

          The Pauli matrices as the complex Lorentz tensor σ_μ_{dot β}_α.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            The Pauli matrices as the complex Lorentz tensor σ_μ_{dot β}_α.

            Equations
            Instances For
              @[reducible, inline]

              The Pauli matrices as the complex Lorentz tensor σ^μ_{dot β}_α.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For

                The Pauli matrices as the complex Lorentz tensor σ^μ_{dot β}_α.

                Equations
                Instances For

                  Different forms #

                  theorem PauliMatrix.pauliCo_eq_ofRat :
                  pauliCo = complexLorentzTensor.ofRat fun (b : TensorSpecies.Tensor.ComponentIdx ![complexLorentzTensor.Color.down, complexLorentzTensor.Color.upL, complexLorentzTensor.Color.upR]) => if b 0 = 0 b 1 = b 2 then { fst := 1, snd := 0 } else if b 0 = 1 b 1 b 2 then { fst := -1, snd := 0 } else if b 0 = 2 b 1 = 0 b 2 = 1 then { fst := 0, snd := 1 } else if b 0 = 2 b 1 = 1 b 2 = 0 then { fst := 0, snd := -1 } else if b 0 = 3 b 1 = 0 b 2 = 0 then { fst := -1, snd := 0 } else if b 0 = 3 b 1 = 1 b 2 = 1 then { fst := 1, snd := 0 } else { fst := 0, snd := 0 }
                  theorem PauliMatrix.pauliCoDown_eq_ofRat :
                  pauliCoDown = complexLorentzTensor.ofRat fun (b : TensorSpecies.Tensor.ComponentIdx ![complexLorentzTensor.Color.down, complexLorentzTensor.Color.downR, complexLorentzTensor.Color.downL]) => if b 0 = 0 b 1 = b 2 then { fst := 1, snd := 0 } else if b 0 = 1 b 1 b 2 then { fst := 1, snd := 0 } else if b 0 = 2 b 1 = 0 b 2 = 1 then { fst := 0, snd := -1 } else if b 0 = 2 b 1 = 1 b 2 = 0 then { fst := 0, snd := 1 } else if b 0 = 3 b 1 = 1 b 2 = 1 then { fst := -1, snd := 0 } else if b 0 = 3 b 1 = 0 b 2 = 0 then { fst := 1, snd := 0 } else { fst := 0, snd := 0 }
                  theorem PauliMatrix.pauliContrDown_ofRat :
                  pauliContrDown = complexLorentzTensor.ofRat fun (b : TensorSpecies.Tensor.ComponentIdx ![complexLorentzTensor.Color.up, complexLorentzTensor.Color.downR, complexLorentzTensor.Color.downL]) => if b 0 = 0 b 1 = b 2 then { fst := 1, snd := 0 } else if b 0 = 1 b 1 b 2 then { fst := -1, snd := 0 } else if b 0 = 2 b 1 = 0 b 2 = 1 then { fst := 0, snd := 1 } else if b 0 = 2 b 1 = 1 b 2 = 0 then { fst := 0, snd := -1 } else if b 0 = 3 b 1 = 1 b 2 = 1 then { fst := 1, snd := 0 } else if b 0 = 3 b 1 = 0 b 2 = 0 then { fst := -1, snd := 0 } else 0

                  Group actions #

                  The tensor pauliCo is invariant under the action of SL(2,ℂ).

                  The tensor pauliCoDown is invariant under the action of SL(2,ℂ).

                  The tensor pauliContrDown is invariant under the action of SL(2,ℂ).