PhysLean Documentation

PhysLean.Relativity.Tensors.Tensorial

Tensorial class #

The tensorial class is used to define a tensorial structure on a type M via a linear equivalence to a tensor of a TensorSpecies.

class TensorSpecies.Tensorial {k : outParam Type} [CommRing k] {C G : outParam Type} [Group G] {n : outParam } (S : outParam (TensorSpecies k C G)) (c : outParam (Fin nC)) (M : Type) [AddCommMonoid M] [Module k M] :

The tensorial class is used to define a tensor structure on a type M through a linear equivalence with a module S.Tensor c for S a tensor species.

  • toTensor : M ≃ₗ[k] Tensor S c

    The equivalence between M and S.Tensor c in a tensorial instance.

Instances
    noncomputable instance TensorSpecies.Tensorial.self {k : Type} [CommRing k] {C G : Type} [Group G] {n : } (S : TensorSpecies k C G) (c : Fin nC) :
    S.Tensorial c (S.Tensor c)
    Equations
    @[simp]
    theorem TensorSpecies.Tensorial.self_toTensor_apply {k : Type} [CommRing k] {C G : Type} [Group G] {n : } (S : TensorSpecies k C G) (c : Fin nC) (t : S.Tensor c) :
    noncomputable instance TensorSpecies.Tensorial.mulAction {k : Type} [CommRing k] {C G : Type} [Group G] {S : TensorSpecies k C G} {n : } {c : Fin nC} {M : Type} [AddCommMonoid M] [Module k M] [S.Tensorial c M] :
    Equations
    theorem TensorSpecies.Tensorial.smul_eq {k : Type} [CommRing k] {C G : Type} [Group G] {S : TensorSpecies k C G} {n : } {c : Fin nC} {M : Type} [AddCommMonoid M] [Module k M] {g : G} {t : M} [S.Tensorial c M] :
    theorem TensorSpecies.Tensorial.toTensor_smul {k : Type} [CommRing k] {C G : Type} [Group G] {S : TensorSpecies k C G} {n : } {c : Fin nC} {M : Type} [AddCommMonoid M] [Module k M] {g : G} {t : M} [S.Tensorial c M] :
    theorem TensorSpecies.Tensorial.smul_toTensor_symm {k : Type} [CommRing k] {C G : Type} [Group G] {S : TensorSpecies k C G} {n : } {c : Fin nC} {M : Type} [AddCommMonoid M] [Module k M] {g : G} {t : S.Tensor c} [self : S.Tensorial c M] :
    def TensorSpecies.Tensorial.numIndices {k : Type} [CommRing k] {C G : Type} [Group G] {S : TensorSpecies k C G} {n : } {c : Fin nC} {M : Type} [AddCommMonoid M] [Module k M] (t : M) [S.Tensorial c M] :

    The number of indices of a elements t : M where M carries a tensorial instance.

    Equations
    Instances For