PhysLean Documentation

PhysLean.Relativity.PauliMatrices.Basic

Pauli matrices #

The Pauli matrices are an invariant complex Lorentz tensor with three indices, two fermionic and one bosonic.

Definitions. #

The Pauli matrices as the complex Lorentz tensor σ^μ^α^{dot β}.

Equations
Instances For
    @[reducible, inline]

    The Pauli matrices as the complex Lorentz tensor σ_μ^α^{dot β}.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      The Pauli matrices as the complex Lorentz tensor σ_μ^α^{dot β}.

      Equations
      Instances For
        @[reducible, inline]

        The Pauli matrices as the complex Lorentz tensor σ_μ_{dot β}_α.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          The Pauli matrices as the complex Lorentz tensor σ_μ_{dot β}_α.

          Equations
          Instances For
            @[reducible, inline]

            The Pauli matrices as the complex Lorentz tensor σ^μ_{dot β}_α.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For

              The Pauli matrices as the complex Lorentz tensor σ^μ_{dot β}_α.

              Equations
              Instances For

                Different forms #

                theorem PauliMatrix.pauliContr_eq_basis :
                pauliContr = ((((((((TensorSpecies.Tensor.basis ![complexLorentzTensor.Color.up, complexLorentzTensor.Color.upL, complexLorentzTensor.Color.upR]) fun (x : Fin (Nat.succ 0).succ.succ) => match x with | 0 => 0 | 1 => 0 | 2 => 0) + (TensorSpecies.Tensor.basis ![complexLorentzTensor.Color.up, complexLorentzTensor.Color.upL, complexLorentzTensor.Color.upR]) fun (x : Fin (Nat.succ 0).succ.succ) => match x with | 0 => 0 | 1 => 1 | 2 => 1) + (TensorSpecies.Tensor.basis ![complexLorentzTensor.Color.up, complexLorentzTensor.Color.upL, complexLorentzTensor.Color.upR]) fun (x : Fin (Nat.succ 0).succ.succ) => match x with | 0 => 1 | 1 => 0 | 2 => 1) + (TensorSpecies.Tensor.basis ![complexLorentzTensor.Color.up, complexLorentzTensor.Color.upL, complexLorentzTensor.Color.upR]) fun (x : Fin (Nat.succ 0).succ.succ) => match x with | 0 => 1 | 1 => 1 | 2 => 0) - Complex.I (TensorSpecies.Tensor.basis ![complexLorentzTensor.Color.up, complexLorentzTensor.Color.upL, complexLorentzTensor.Color.upR]) fun (x : Fin (Nat.succ 0).succ.succ) => match x with | 0 => 2 | 1 => 0 | 2 => 1) + Complex.I (TensorSpecies.Tensor.basis ![complexLorentzTensor.Color.up, complexLorentzTensor.Color.upL, complexLorentzTensor.Color.upR]) fun (x : Fin (Nat.succ 0).succ.succ) => match x with | 0 => 2 | 1 => 1 | 2 => 0) + (TensorSpecies.Tensor.basis ![complexLorentzTensor.Color.up, complexLorentzTensor.Color.upL, complexLorentzTensor.Color.upR]) fun (x : Fin (Nat.succ 0).succ.succ) => match x with | 0 => 3 | 1 => 0 | 2 => 0) - (TensorSpecies.Tensor.basis ![complexLorentzTensor.Color.up, complexLorentzTensor.Color.upL, complexLorentzTensor.Color.upR]) fun (x : Fin (Nat.succ 0).succ.succ) => match x with | 0 => 3 | 1 => 1 | 2 => 1
                theorem PauliMatrix.pauliContr_eq_ofRat :
                pauliContr = complexLorentzTensor.ofRat fun (b : TensorSpecies.Tensor.ComponentIdx ![complexLorentzTensor.Color.up, complexLorentzTensor.Color.upL, complexLorentzTensor.Color.upR]) => if b 0 = 0 b 1 = b 2 then { fst := 1, snd := 0 } else if b 0 = 1 b 1 b 2 then { fst := 1, snd := 0 } else if b 0 = 2 b 1 = 0 b 2 = 1 then { fst := 0, snd := -1 } else if b 0 = 2 b 1 = 1 b 2 = 0 then { fst := 0, snd := 1 } else if b 0 = 3 b 1 = 0 b 2 = 0 then { fst := 1, snd := 0 } else if b 0 = 3 b 1 = 3 b 2 = 3 then { fst := -1, snd := 0 } else 0
                theorem PauliMatrix.pauliCo_eq_ofRat :
                pauliCo = complexLorentzTensor.ofRat fun (b : TensorSpecies.Tensor.ComponentIdx ![complexLorentzTensor.Color.down, complexLorentzTensor.Color.upL, complexLorentzTensor.Color.upR]) => if b 0 = 0 b 1 = b 2 then { fst := 1, snd := 0 } else if b 0 = 1 b 1 b 2 then { fst := -1, snd := 0 } else if b 0 = 2 b 1 = 0 b 2 = 1 then { fst := 0, snd := 1 } else if b 0 = 2 b 1 = 1 b 2 = 0 then { fst := 0, snd := -1 } else if b 0 = 3 b 1 = 0 b 2 = 0 then { fst := -1, snd := 0 } else if b 0 = 3 b 1 = 1 b 2 = 1 then { fst := 1, snd := 0 } else { fst := 0, snd := 0 }
                theorem PauliMatrix.pauliCoDown_eq_ofRat :
                pauliCoDown = complexLorentzTensor.ofRat fun (b : TensorSpecies.Tensor.ComponentIdx ![complexLorentzTensor.Color.down, complexLorentzTensor.Color.downR, complexLorentzTensor.Color.downL]) => if b 0 = 0 b 1 = b 2 then { fst := 1, snd := 0 } else if b 0 = 1 b 1 b 2 then { fst := 1, snd := 0 } else if b 0 = 2 b 1 = 0 b 2 = 1 then { fst := 0, snd := -1 } else if b 0 = 2 b 1 = 1 b 2 = 0 then { fst := 0, snd := 1 } else if b 0 = 3 b 1 = 1 b 2 = 1 then { fst := -1, snd := 0 } else if b 0 = 3 b 1 = 0 b 2 = 0 then { fst := 1, snd := 0 } else { fst := 0, snd := 0 }
                theorem PauliMatrix.pauliContrDown_ofRat :
                pauliContrDown = complexLorentzTensor.ofRat fun (b : TensorSpecies.Tensor.ComponentIdx ![complexLorentzTensor.Color.up, complexLorentzTensor.Color.downR, complexLorentzTensor.Color.downL]) => if b 0 = 0 b 1 = b 2 then { fst := 1, snd := 0 } else if b 0 = 1 b 1 b 2 then { fst := -1, snd := 0 } else if b 0 = 2 b 1 = 0 b 2 = 1 then { fst := 0, snd := 1 } else if b 0 = 2 b 1 = 1 b 2 = 0 then { fst := 0, snd := -1 } else if b 0 = 3 b 1 = 1 b 2 = 1 then { fst := 1, snd := 0 } else if b 0 = 3 b 1 = 0 b 2 = 0 then { fst := -1, snd := 0 } else 0

                Group actions #

                The tensor pauliContr is invariant under the action of SL(2,ℂ).

                The tensor pauliCo is invariant under the action of SL(2,ℂ).

                The tensor pauliCoDown is invariant under the action of SL(2,ℂ).

                The tensor pauliContrDown is invariant under the action of SL(2,ℂ).