The electrostatics of a stationary point particle in 1d #
i. Overview #
In this module we give the electromagnetic properties of a point particle sitting at the origin in 1d space.
ii. Key results #
oneDimPointParticle: The electromagnetic potential of a point particle stationary at the origin of 1d space.oneDimPointParticle_isExterma: The electric field of a point particle stationary at the origin of 1d space satisfies Maxwell's equations
iii. Table of contents #
- A. The current density
- B. The Potentials
- B.1. The electromagnetic potential
- B.2. The vector potential is zero
- B.3. The scalar potential
- C. The electric field
- C.1. The time derivative of the electric field
- D. The magnetic field
- E. Maxwell's equations
iv. References #
A. The current density #
noncomputable def
Electromagnetism.DistElectromagneticPotential.oneDimPointParticleCurrentDensity
(c : SpeedOfLight)
(q : ℝ)
(r₀ : Space 1)
:
The current density of a point particle stationary at the origin of 1d space.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
Electromagnetism.DistElectromagneticPotential.oneDimPointParticleCurrentDensity_eq_distTranslate
(c : SpeedOfLight)
(q : ℝ)
(r₀ : Space 1)
:
oneDimPointParticleCurrentDensity c q r₀ = (SpaceTime.distTimeSlice c).symm
(Space.constantTime
((Space.distTranslate (Space.basis.repr r₀))
((c.val * q) • Distribution.diracDelta' ℝ 0 (Lorentz.Vector.basis (Sum.inl 0)))))
@[simp]
theorem
Electromagnetism.DistElectromagneticPotential.oneDimPointParticleCurrentDensity_currentDensity
(c : SpeedOfLight)
(q : ℝ)
(r₀ : Space 1)
:
@[simp]
theorem
Electromagnetism.DistElectromagneticPotential.oneDimPointParticleCurrentDensity_chargeDensity
(c : SpeedOfLight)
(q : ℝ)
(r₀ : Space 1)
:
B. The Potentials #
B.1. The electromagnetic potential #
noncomputable def
Electromagnetism.DistElectromagneticPotential.oneDimPointParticle
(𝓕 : FreeSpace)
(q : ℝ)
(r₀ : Space 1)
:
The electromagnetic potential of a point particle stationary at r₀
of 1d space.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
Electromagnetism.DistElectromagneticPotential.oneDimPointParticle_eq_distTranslate
(𝓕 : FreeSpace)
(q : ℝ)
(r₀ : Space 1)
:
oneDimPointParticle 𝓕 q r₀ = (SpaceTime.distTimeSlice 𝓕.c).symm
(Space.constantTime
((Space.distTranslate (Space.basis.repr r₀))
(Space.distOfFunction
(fun (x : Space 1) => (-(q * 𝓕.μ₀ * 𝓕.c.val) / 2 * ‖x‖) • Lorentz.Vector.basis (Sum.inl 0)) ⋯)))
@[simp]
theorem
Electromagnetism.DistElectromagneticPotential.oneDimPointParticle_vectorPotential
(𝓕 : FreeSpace)
(q : ℝ)
(r₀ : Space 1)
:
B.3. The scalar potential #
theorem
Electromagnetism.DistElectromagneticPotential.oneDimPointParticle_scalarPotential
(𝓕 : FreeSpace)
(q : ℝ)
(r₀ : Space 1)
:
(scalarPotential 𝓕.c) (oneDimPointParticle 𝓕 q r₀) = Space.constantTime (Space.distOfFunction (fun (x : Space 1) => -(q * 𝓕.μ₀ * 𝓕.c.val ^ 2 / 2) • ‖x - r₀‖) ⋯)
C. The electric field #
theorem
Electromagnetism.DistElectromagneticPotential.oneDimPointParticle_electricField
(𝓕 : FreeSpace)
(q : ℝ)
(r₀ : Space 1)
:
(electricField 𝓕.c) (oneDimPointParticle 𝓕 q r₀) = (q * 𝓕.μ₀ * 𝓕.c.val ^ 2 / 2) • Space.constantTime (Space.distOfFunction (fun (x : Space 1) => ‖x - r₀‖ ^ (-1) • Space.basis.repr (x - r₀)) ⋯)
C.1. The time derivative of the electric field #
@[simp]
theorem
Electromagnetism.DistElectromagneticPotential.oneDimPointParticle_electricField_timeDeriv
(𝓕 : FreeSpace)
(q : ℝ)
(r₀ : Space 1)
:
D. The magnetic field #
theorem
Electromagnetism.DistElectromagneticPotential.oneDimPointParticle_magneticFieldMatrix
{𝓕 : FreeSpace}
(q : ℝ)
(r₀ : Space 1)
:
E. Maxwell's equations #
theorem
Electromagnetism.DistElectromagneticPotential.oneDimPointParticle_div_electricField
{𝓕 : FreeSpace}
(q : ℝ)
(r₀ : Space 1)
:
Space.distSpaceDiv ((electricField 𝓕.c) (oneDimPointParticle 𝓕 q r₀)) = (𝓕.μ₀ * 𝓕.c.val ^ 2) • Space.constantTime (q • Distribution.diracDelta ℝ r₀)
theorem
Electromagnetism.DistElectromagneticPotential.oneDimPointParticle_isExterma
(𝓕 : FreeSpace)
(q : ℝ)
(r₀ : Space 1)
:
IsExtrema 𝓕 (oneDimPointParticle 𝓕 q r₀) (oneDimPointParticleCurrentDensity 𝓕.c q r₀)