The norm on space #
i. Overview #
The main content of this file is defining Space.normPowerSeries, a power series which is
differentiable everywhere, and which tends to the norm in the limit as n → ∞.
We use properties of this power series to prove various results about distributions involving norms.
ii. Key results #
normPowerSeries: A power series which is differentiable everywhere, and in the limit asn → ∞tends to‖x‖.normPowerSeries_differentiable: The power series is differentiable everywhere.normPowerSeries_tendsto: The power series tends to the norm in the limit asn → ∞.distGrad_distOfFunction_norm_zpow: The gradient of the distribution defined by a power of the norm.distGrad_distOfFunction_log_norm: The gradient of the distribution defined by the logarithm of the norm.distDiv_inv_pow_eq_dim: The divergence of the distribution defined by the inverse power of the norm propotional to the Dirac delta distribution.
iii. Table of contents #
- A. The norm as a power series
- A.1. Differentiability of the norm power series
- A.2. The limit of the norm power series
- A.3. The derivative of the norm power series
- A.4. Limits of the derivative of the power series
- A.5. The power series is AEStronglyMeasurable
- A.6. Bounds on the norm power series
- A.7. The
IsDistBoundedproperty of the norm power series - A.8. Differentiability of functions
- A.9. Derivatives of functions
- A.10. Gradients of distributions based on powers
- A.10.1. The limits of gradients of distributions based on powers
- A.11. Gradients of distributions based on logs
- A.11.1. The limits of gradients of distributions based on logs
- B. Distributions involving norms
- B.1. The gradient of distributions based on powers
- B.2. The gradient of distributions based on logs
- B.3. Divergence equal dirac delta
iv. References #
A. The norm as a power series #
A.1. Differentiability of the norm power series #
theorem
Space.normPowerSeries_differentiable
{d : ℕ}
(n : ℕ)
:
Differentiable ℝ fun (x : Space d) => normPowerSeries n x
A.2. The limit of the norm power series #
theorem
Space.normPowerSeries_tendsto
{d : ℕ}
(x : Space d)
(hx : x ≠ 0)
:
Filter.Tendsto (fun (n : ℕ) => normPowerSeries n x) Filter.atTop (nhds ‖x‖)
theorem
Space.normPowerSeries_inv_tendsto
{d : ℕ}
(x : Space d)
(hx : x ≠ 0)
:
Filter.Tendsto (fun (n : ℕ) => (normPowerSeries n x)⁻¹) Filter.atTop (nhds ‖x‖⁻¹)
A.3. The derivative of the norm power series #
A.4. Limits of the derivative of the power series #
theorem
Space.deriv_normPowerSeries_tendsto
{d : ℕ}
(x : Space d)
(hx : x ≠ 0)
(i : Fin d)
:
Filter.Tendsto (fun (n : ℕ) => deriv i (normPowerSeries n) x) Filter.atTop (nhds (x.val i * ‖x‖⁻¹))
theorem
Space.fderiv_normPowerSeries_tendsto
{d : ℕ}
(x y : Space d)
(hx : x ≠ 0)
:
Filter.Tendsto (fun (n : ℕ) => (fderiv ℝ (fun (x : Space d) => normPowerSeries n x) x) y) Filter.atTop
(nhds (inner ℝ y x * ‖x‖⁻¹))
A.5. The power series is AEStronglyMeasurable #
A.6. Bounds on the norm power series #
@[simp]
@[simp]
@[simp]
@[simp]
A.7. The IsDistBounded property of the norm power series #
theorem
Space.IsDistBounded.normPowerSeries_zpow
{d n : ℕ}
(m : ℤ)
:
IsDistBounded fun (x : Space d) => normPowerSeries n x ^ m
theorem
Space.IsDistBounded.normPowerSeries_single
{d n : ℕ}
:
IsDistBounded fun (x : Space d) => normPowerSeries n x
theorem
Space.IsDistBounded.normPowerSeries_inv
{d n : ℕ}
:
IsDistBounded fun (x : Space d) => (normPowerSeries n x)⁻¹
theorem
Space.IsDistBounded.normPowerSeries_deriv
{d : ℕ}
(n : ℕ)
(i : Fin d)
:
IsDistBounded fun (x : Space d) => deriv i (normPowerSeries n) x
theorem
Space.IsDistBounded.normPowerSeries_fderiv
{d : ℕ}
(n : ℕ)
(y : Space d)
:
IsDistBounded fun (x : Space d) => (fderiv ℝ (fun (x : Space d) => normPowerSeries n x) x) y
theorem
Space.IsDistBounded.normPowerSeries_log
{d : ℕ}
(n : ℕ)
:
IsDistBounded fun (x : Space d) => Real.log (normPowerSeries n x)
A.8. Differentiability of functions #
theorem
Space.differentiable_normPowerSeries_zpow
{d n : ℕ}
(m : ℤ)
:
Differentiable ℝ fun (x : Space d) => normPowerSeries n x ^ m
theorem
Space.differentiable_normPowerSeries_inv
{d n : ℕ}
:
Differentiable ℝ fun (x : Space d) => (normPowerSeries n x)⁻¹
theorem
Space.differentiable_log_normPowerSeries
{d n : ℕ}
:
Differentiable ℝ fun (x : Space d) => Real.log (normPowerSeries n x)
A.9. Derivatives of functions #
theorem
Space.deriv_log_normPowerSeries
{d n : ℕ}
(x : Space d)
(i : Fin d)
:
deriv i (fun (x : Space d) => Real.log (normPowerSeries n x)) x = x.val i * normPowerSeries n x ^ (-2)
A.10. Gradients of distributions based on powers #
theorem
Space.gradient_dist_normPowerSeries_zpow
{d n : ℕ}
(m : ℤ)
:
distGrad (distOfFunction (fun (x : Space d) => normPowerSeries n x ^ m) ⋯) = distOfFunction (fun (x : Space d) => (↑m * normPowerSeries n x ^ (m - 2)) • basis.repr x) ⋯
A.10.1. The limits of gradients of distributions based on powers #
theorem
Space.gradient_dist_normPowerSeries_zpow_tendsTo_distGrad_norm
{d : ℕ}
(m : ℤ)
(hm : -↑(d.succ - 1) ≤ m)
(η : SchwartzMap (Space d.succ) ℝ)
(y : EuclideanSpace ℝ (Fin d.succ))
:
Filter.Tendsto
(fun (n : ℕ) => inner ℝ ((distGrad (distOfFunction (fun (x : Space d.succ) => normPowerSeries n x ^ m) ⋯)) η) y)
Filter.atTop (nhds (inner ℝ ((distGrad (distOfFunction (fun (x : Space d.succ) => ‖x‖ ^ m) ⋯)) η) y))
theorem
Space.gradient_dist_normPowerSeries_zpow_tendsTo
{d : ℕ}
(m : ℤ)
(hm : -↑(d.succ - 1) + 1 ≤ m)
(η : SchwartzMap (Space d.succ) ℝ)
(y : EuclideanSpace ℝ (Fin d.succ))
:
Filter.Tendsto
(fun (n : ℕ) => inner ℝ ((distGrad (distOfFunction (fun (x : Space d.succ) => normPowerSeries n x ^ m) ⋯)) η) y)
Filter.atTop (nhds (inner ℝ ((distOfFunction (fun (x : Space d.succ) => (↑m * ‖x‖ ^ (m - 2)) • basis.repr x) ⋯) η) y))
A.11. Gradients of distributions based on logs #
theorem
Space.gradient_dist_normPowerSeries_log
{d n : ℕ}
:
distGrad (distOfFunction (fun (x : Space d) => Real.log (normPowerSeries n x)) ⋯) = distOfFunction (fun (x : Space d) => normPowerSeries n x ^ (-2) • basis.repr x) ⋯
A.11.1. The limits of gradients of distributions based on logs #
theorem
Space.gradient_dist_normPowerSeries_log_tendsTo_distGrad_norm
{d : ℕ}
(η : SchwartzMap (Space d.succ.succ) ℝ)
(y : EuclideanSpace ℝ (Fin d.succ.succ))
:
Filter.Tendsto
(fun (n : ℕ) =>
inner ℝ ((distGrad (distOfFunction (fun (x : Space d.succ.succ) => Real.log (normPowerSeries n x)) ⋯)) η) y)
Filter.atTop (nhds (inner ℝ ((distGrad (distOfFunction (fun (x : Space d.succ.succ) => Real.log ‖x‖) ⋯)) η) y))
theorem
Space.gradient_dist_normPowerSeries_log_tendsTo
{d : ℕ}
(η : SchwartzMap (Space d.succ.succ) ℝ)
(y : EuclideanSpace ℝ (Fin d.succ.succ))
:
Filter.Tendsto
(fun (n : ℕ) =>
inner ℝ ((distGrad (distOfFunction (fun (x : Space d.succ.succ) => Real.log (normPowerSeries n x)) ⋯)) η) y)
Filter.atTop (nhds (inner ℝ ((distOfFunction (fun (x : Space d.succ.succ) => ‖x‖ ^ (-2) • basis.repr x) ⋯) η) y))
B. Distributions involving norms #
B.1. The gradient of distributions based on powers #
B.2. The gradient of distributions based on logs #
B.3. Divergence equal dirac delta #
We show that the divergence of x ↦ ‖x‖ ^ (- d) • x is equal to a multiple of the Dirac delta
at 0.
The proof