PhysLean Documentation

PhysLean.SpaceAndTime.Space.Norm

The norm on space #

i. Overview #

The main content of this file is defining Space.normPowerSeries, a power series which is differentiable everywhere, and which tends to the norm in the limit as n → ∞.

We use properties of this power series to prove various results about distributions involving norms.

ii. Key results #

iii. Table of contents #

iv. References #

A. The norm as a power series #

def Space.normPowerSeries {d : } :
Space d

A power series which is differentiable everywhere, and in the limit as n → ∞ tends to ‖x‖.

Equations
Instances For
    theorem Space.normPowerSeries_eq {d : } (n : ) :
    normPowerSeries n = fun (x : Space d) => (x ^ 2 + 1 / (n + 1))
    theorem Space.normPowerSeries_eq_rpow {d : } (n : ) :
    normPowerSeries n = fun (x : Space d) => (x ^ 2 + 1 / (n + 1)) ^ (1 / 2)

    A.1. Differentiability of the norm power series #

    A.2. The limit of the norm power series #

    A.3. The derivative of the norm power series #

    theorem Space.deriv_normPowerSeries {d : } (n : ) (x : Space d) (i : Fin d) :
    theorem Space.fderiv_normPowerSeries {d : } (n : ) (x y : Space d) :
    (fderiv (fun (x : Space d) => normPowerSeries n x) x) y = inner y x * (normPowerSeries n x)⁻¹

    A.4. Limits of the derivative of the power series #

    theorem Space.deriv_normPowerSeries_tendsto {d : } (x : Space d) (hx : x 0) (i : Fin d) :
    theorem Space.fderiv_normPowerSeries_tendsto {d : } (x y : Space d) (hx : x 0) :
    Filter.Tendsto (fun (n : ) => (fderiv (fun (x : Space d) => normPowerSeries n x) x) y) Filter.atTop (nhds (inner y x * x⁻¹))

    A.5. The power series is AEStronglyMeasurable #

    A.6. Bounds on the norm power series #

    @[simp]
    theorem Space.normPowerSeries_nonneg {d : } (n : ) (x : Space d) :
    @[simp]
    theorem Space.normPowerSeries_pos {d : } (n : ) (x : Space d) :
    @[simp]
    theorem Space.normPowerSeries_ne_zero {d : } (n : ) (x : Space d) :
    @[simp]
    theorem Space.normPowerSeries_zpow_le_norm_sq_add_one {d : } (n : ) (m : ) (x : Space d) (hx : x 0) :
    normPowerSeries n x ^ m (x + 1) ^ m + x ^ m

    A.7. The IsDistBounded property of the norm power series #

    theorem Space.IsDistBounded.normPowerSeries_fderiv {d : } (n : ) (y : Space d) :
    IsDistBounded fun (x : Space d) => (fderiv (fun (x : Space d) => normPowerSeries n x) x) y

    A.8. Differentiability of functions #

    A.9. Derivatives of functions #

    theorem Space.deriv_normPowerSeries_zpow {d n : } (m : ) (x : Space d) (i : Fin d) :
    deriv i (fun (x : Space d) => normPowerSeries n x ^ m) x = m * x.val i * normPowerSeries n x ^ (m - 2)
    theorem Space.fderiv_normPowerSeries_zpow {d n : } (m : ) (x y : Space d) :
    (fderiv (fun (x : Space d) => normPowerSeries n x ^ m) x) y = m * inner y x * normPowerSeries n x ^ (m - 2)
    theorem Space.deriv_log_normPowerSeries {d n : } (x : Space d) (i : Fin d) :
    deriv i (fun (x : Space d) => Real.log (normPowerSeries n x)) x = x.val i * normPowerSeries n x ^ (-2)
    theorem Space.fderiv_log_normPowerSeries {d n : } (x y : Space d) :
    (fderiv (fun (x : Space d) => Real.log (normPowerSeries n x)) x) y = inner y x * normPowerSeries n x ^ (-2)

    A.10. Gradients of distributions based on powers #

    theorem Space.gradient_dist_normPowerSeries_zpow {d n : } (m : ) :
    distGrad (distOfFunction (fun (x : Space d) => normPowerSeries n x ^ m) ) = distOfFunction (fun (x : Space d) => (m * normPowerSeries n x ^ (m - 2)) basis.repr x)

    A.10.1. The limits of gradients of distributions based on powers #

    theorem Space.gradient_dist_normPowerSeries_zpow_tendsTo_distGrad_norm {d : } (m : ) (hm : -↑(d.succ - 1) m) (η : SchwartzMap (Space d.succ) ) (y : EuclideanSpace (Fin d.succ)) :
    Filter.Tendsto (fun (n : ) => inner ((distGrad (distOfFunction (fun (x : Space d.succ) => normPowerSeries n x ^ m) )) η) y) Filter.atTop (nhds (inner ((distGrad (distOfFunction (fun (x : Space d.succ) => x ^ m) )) η) y))
    theorem Space.gradient_dist_normPowerSeries_zpow_tendsTo {d : } (m : ) (hm : -↑(d.succ - 1) + 1 m) (η : SchwartzMap (Space d.succ) ) (y : EuclideanSpace (Fin d.succ)) :
    Filter.Tendsto (fun (n : ) => inner ((distGrad (distOfFunction (fun (x : Space d.succ) => normPowerSeries n x ^ m) )) η) y) Filter.atTop (nhds (inner ((distOfFunction (fun (x : Space d.succ) => (m * x ^ (m - 2)) basis.repr x) ) η) y))

    A.11. Gradients of distributions based on logs #

    A.11.1. The limits of gradients of distributions based on logs #

    B. Distributions involving norms #

    B.1. The gradient of distributions based on powers #

    theorem Space.distGrad_distOfFunction_norm_zpow {d : } (m : ) (hm : -↑(d.succ - 1) + 1 m) :
    distGrad (distOfFunction (fun (x : Space d.succ) => x ^ m) ) = distOfFunction (fun (x : Space d.succ) => (m * x ^ (m - 2)) basis.repr x)

    B.2. The gradient of distributions based on logs #

    B.3. Divergence equal dirac delta #

    We show that the divergence of x ↦ ‖x‖ ^ (- d) • x is equal to a multiple of the Dirac delta at 0.

    The proof