Time slice #
Time slicing functions on spacetime, turning them into a function
Time → Space d → M.
This is useful when going from relativistic physics (defined using SpaceTime)
to non-relativistic physics (defined using Space and Time).
theorem
SpaceTime.timeSlice_contDiff
{d : ℕ}
{M : Type}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
{n : WithTop ℕ∞}
(c : SpeedOfLight)
(f : SpaceTime d → M)
(h : ContDiff ℝ n f)
:
theorem
SpaceTime.timeSlice_differentiable
{d : ℕ}
{M : Type}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
(c : SpeedOfLight)
(f : SpaceTime d → M)
(h : Differentiable ℝ f)
:
Differentiable ℝ ↿((timeSlice c) f)
def
SpaceTime.timeSliceLinearEquiv
{d : ℕ}
{M : Type}
[AddCommGroup M]
[Module ℝ M]
(c : SpeedOfLight := 1)
:
The timeslice of a function SpaceTime d → M forming a function
Time → Space d → M, as a linear equivalence.
Equations
- SpaceTime.timeSliceLinearEquiv c = { toFun := ⇑(SpaceTime.timeSlice c), map_add' := ⋯, map_smul' := ⋯, invFun := ⇑(SpaceTime.timeSlice c).symm, left_inv := ⋯, right_inv := ⋯ }
Instances For
theorem
SpaceTime.timeSliceLinearEquiv_apply
{d : ℕ}
{M : Type}
[AddCommGroup M]
[Module ℝ M]
(c : SpeedOfLight)
(f : SpaceTime d → M)
:
theorem
SpaceTime.timeSliceLinearEquiv_symm_apply
{d : ℕ}
{M : Type}
[AddCommGroup M]
[Module ℝ M]
(c : SpeedOfLight)
(f : Time → Space d → M)
:
B. Time slices of distributions #
noncomputable def
SpaceTime.distTimeSlice
{M : Type}
{d : ℕ}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
(c : SpeedOfLight := 1)
:
The time slice of a distribution on SpaceTime d to form a distribution
on Time × Space d.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
SpaceTime.distTimeSlice_apply
{M : Type}
{d : ℕ}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
(c : SpeedOfLight)
(f : (SpaceTime d)→d[ℝ] M)
(κ : SchwartzMap (Time × Space d) ℝ)
:
theorem
SpaceTime.distTimeSlice_symm_apply
{M : Type}
{d : ℕ}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
(c : SpeedOfLight)
(f : (Time × Space d)→d[ℝ] M)
(κ : SchwartzMap (SpaceTime d) ℝ)
:
((distTimeSlice c).symm f) κ = f ((SchwartzMap.compCLMOfContinuousLinearEquiv ℝ (toTimeAndSpace c).symm) κ)
B.1. Time slices and derivatives #
theorem
SpaceTime.distTimeSlice_distDeriv_inl
{M : Type}
{d : ℕ}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
{c : SpeedOfLight}
(f : (SpaceTime d)→d[ℝ] M)
:
(distTimeSlice c) ((distDeriv (Sum.inl 0)) f) = (1 / c.val) • Space.distTimeDeriv ((distTimeSlice c) f)
theorem
SpaceTime.distDeriv_inl_distTimeSlice_symm
{M : Type}
{d : ℕ}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
{c : SpeedOfLight}
(f : (Time × Space d)→d[ℝ] M)
:
(distDeriv (Sum.inl 0)) ((distTimeSlice c).symm f) = (1 / c.val) • (distTimeSlice c).symm (Space.distTimeDeriv f)
theorem
SpaceTime.distTimeSlice_symm_distTimeDeriv_eq
{M : Type}
{d : ℕ}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
{c : SpeedOfLight}
(f : (Time × Space d)→d[ℝ] M)
:
(distTimeSlice c).symm (Space.distTimeDeriv f) = c.val • (distDeriv (Sum.inl 0)) ((distTimeSlice c).symm f)
theorem
SpaceTime.distTimeSlice_distDeriv_inr
{M : Type}
{d : ℕ}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
{c : SpeedOfLight}
(i : Fin d)
(f : (SpaceTime d)→d[ℝ] M)
:
theorem
SpaceTime.distDeriv_inr_distTimeSlice_symm
{M : Type}
{d : ℕ}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
{c : SpeedOfLight}
(i : Fin d)
(f : (Time × Space d)→d[ℝ] M)
:
(distDeriv (Sum.inr i)) ((distTimeSlice c).symm f) = (distTimeSlice c).symm ((Space.distSpaceDeriv i) f)