PhysLean Documentation

PhysLean.Relativity.Tensors.RealTensor.Vector.Basic

Lorentz Vectors #

In this module we define Lorentz vectors as real Lorentz tensors with a single up index. We create an API around Lorentz vectors to make working with them as easy as possible.

def Lorentz.Vector (d : := 3) :

Real contravariant Lorentz vector.

Equations
Instances For
    @[simp]
    theorem Lorentz.Vector.apply_smul {d : } (c : ) (v : Vector d) (i : Fin 1 Fin d) :
    (c v) i = c * v i
    @[simp]
    theorem Lorentz.Vector.apply_add {d : } (v w : Vector d) (i : Fin 1 Fin d) :
    (v + w) i = v i + w i
    @[simp]
    theorem Lorentz.Vector.apply_sub {d : } (v w : Vector d) (i : Fin 1 Fin d) :
    (v - w) i = v i - w i
    @[simp]
    theorem Lorentz.Vector.neg_apply {d : } (v : Vector d) (i : Fin 1 Fin d) :
    (-v) i = -v i
    @[simp]
    theorem Lorentz.Vector.zero_apply {d : } (i : Fin 1 Fin d) :
    0 i = 0

    Tensorial #

    The equivalence between the type of indices of a Lorentz vector and Fin 1 ⊕ Fin d.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      Equations
      • One or more equations did not get rendered due to their size.

      Basis #

      The basis on Vector d indexed by Fin 1 ⊕ Fin d.

      Equations
      Instances For
        @[simp]
        theorem Lorentz.Vector.basis_apply {d : } (μ ν : Fin 1 Fin d) :
        basis μ ν = if μ = ν then 1 else 0
        theorem Lorentz.Vector.basis_repr_apply {d : } (p : Vector d) (μ : Fin 1 Fin d) :
        (basis.repr p) μ = p μ

        The action of the Lorentz group #

        theorem Lorentz.Vector.smul_eq_sum {d : } (i : Fin 1 Fin d) (Λ : (LorentzGroup d)) (p : Vector d) :
        (Λ p) i = j : Fin 1 Fin d, Λ i j * p j
        theorem Lorentz.Vector.smul_eq_mulVec {d : } (Λ : (LorentzGroup d)) (p : Vector d) :
        Λ p = (↑Λ).mulVec p
        @[simp]
        theorem Lorentz.Vector.smul_add {d : } (Λ : (LorentzGroup d)) (p q : Vector d) :
        Λ (p + q) = Λ p + Λ q
        @[simp]
        theorem Lorentz.Vector.smul_sub {d : } (Λ : (LorentzGroup d)) (p q : Vector d) :
        Λ (p - q) = Λ p - Λ q
        @[simp]
        theorem Lorentz.Vector.smul_zero {d : } (Λ : (LorentzGroup d)) :
        Λ 0 = 0
        theorem Lorentz.Vector.smul_neg {d : } (Λ : (LorentzGroup d)) (p : Vector d) :
        Λ -p = -(Λ p)
        theorem Lorentz.Vector.neg_smul {d : } (Λ : (LorentzGroup d)) (p : Vector d) :
        -Λ p = -(Λ p)
        theorem LorentzGroup.eq_of_action_vector_eq {d : } {Λ Λ' : (LorentzGroup d)} (h : ∀ (p : Lorentz.Vector d), Λ p = Λ' p) :
        Λ = Λ'

        Spatial part #

        @[reducible, inline]

        Extract spatial components from a Lorentz vector, returning them as a vector in Euclidean space.

        Equations
        Instances For

          The time component #

          @[reducible, inline]

          Extract time component from a Lorentz vector

          Equations
          Instances For

            ## Smoothness

            The structure of a smooth manifold on Vector .

            Equations
            Instances For