Metrics as real Lorentz tensors #
@[reducible, inline]
Real contravariant Lorentz vector.
Equations
Instances For
The equivalence between the type of indices of a Lorentz vector and
Fin 1 ⊕ Fin d
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
theorem
Lorentz.Vector.toCoord_pure
{d : ℕ}
(p : TensorSpecies.Tensor.Pure (realLorentzTensor d) ![realLorentzTensor.Color.up])
(i : Fin 1 ⊕ Fin d)
:
theorem
Lorentz.Vector.toCoord_basis_apply
{d : ℕ}
(μ : Fin (1 + d))
(ν : Fin 1 ⊕ Fin d)
:
toCoord ((TensorSpecies.Tensor.basis ![realLorentzTensor.Color.up]) fun (x : Fin (Nat.succ 0)) => Fin.cast ⋯ μ) ν = (Finsupp.single (finSumFinEquiv.symm μ) 1) ν
theorem
Lorentz.Vector.basis_repr_apply
{d : ℕ}
(p : Vector d)
(b : TensorSpecies.Tensor.ComponentIdx ![realLorentzTensor.Color.up])
:
((TensorSpecies.Tensor.basis ![realLorentzTensor.Color.up]).repr p) b = toCoord p (finSumFinEquiv.symm (b 0))
The Minkowski product of Lorentz vectors in the +--- convention..
Equations
- One or more equations did not get rendered due to their size.
Instances For
The Minkowski product of Lorentz vectors in the +--- convention..
Equations
- One or more equations did not get rendered due to their size.
Instances For
## Smoothness
Equations
Equations
The toCoord
map as a ContinuousLinearEquiv
.
Instances For
The coordinates of a Lorentz vector as a linear map.
Equations
Instances For
theorem
Lorentz.Vector.toCoord_apply_eq_toCoordFull_apply
{d : ℕ}
(p : Vector d)
:
toCoord p = (Equiv.piCongrLeft' (fun (a : TensorSpecies.Tensor.ComponentIdx ![realLorentzTensor.Color.up]) => ℝ) indexEquiv)
(toCoordFull p)
The toCoordFull
map as a ContinuousLinearEquiv
.
Equations
Instances For
The structure of a smooth manifold on Vector .
Equations
Instances For
The instance of a ChartedSpace
on Vector d
.
Equations
The Lorentz action #
@[reducible, inline]
Extract spatial components from a Lorentz vector, returning them as a vector in Euclidean space.
Equations
- v.spatialPart i = Lorentz.Vector.toCoord v (Sum.inr i)
Instances For
@[simp]
theorem
Lorentz.Vector.spatialPart_basis_natAdd
{d : ℕ}
(i j : Fin d)
:
spatialPart
((TensorSpecies.Tensor.basis ![realLorentzTensor.Color.up]) fun (x : Fin (Nat.succ 0)) =>
Fin.cast ⋯ (Fin.natAdd 1 i))
j = (Finsupp.single (Sum.inr i) 1) (Sum.inr j)
@[simp]
theorem
Lorentz.Vector.spatialPart_basis_castAdd
{d : ℕ}
(i : Fin d)
:
spatialPart
((TensorSpecies.Tensor.basis ![realLorentzTensor.Color.up]) fun (x : Fin (Nat.succ 0)) =>
Fin.cast ⋯ (Fin.castAdd d 0))
i = 0
@[reducible, inline]
Extract time component from a Lorentz vector
Equations
- v.timeComponent = Lorentz.Vector.toCoord v (Sum.inl 0)
Instances For
@[simp]
theorem
Lorentz.Vector.timeComponent_basis_natAdd
{d : ℕ}
(i : Fin d)
:
timeComponent
((TensorSpecies.Tensor.basis ![realLorentzTensor.Color.up]) fun (x : Fin (Nat.succ 0)) =>
Fin.cast ⋯ (Fin.natAdd 1 i)) = 0
@[simp]
theorem
Lorentz.Vector.timeComponent_basis_castAdd
{d : ℕ}
:
timeComponent
((TensorSpecies.Tensor.basis ![realLorentzTensor.Color.up]) fun (x : Fin (Nat.succ 0)) =>
Fin.cast ⋯ (Fin.castAdd d 0)) = 1