Functions and distributions on Time and Space d #
i. Overview #
In this module we define and prove basic lemmas about derivatives of functions and
distributions on both Time and Space d.
We put these results in the namespace Space by convention.
ii. Key results #
distTimeDeriv: The derivative of a distribution onTime × Space dalong the temporal coordinate.distSpaceDeriv: The derivative of a distribution onTime × Space dalong the spatialicoordinate.distSpaceGrad: The spatial gradient of a distribution onTime × Space d.distSpaceDiv: The spatial divergence of a distribution onTime × Space d.distSpaceCurl: The spatial curl of a distribution onTime × Space 3.
iii. Table of contents #
- A. Derivatives involving time and space
- A.1. Space and time derivatives in terms of curried functions
- A.2. Commuting time and space derivatives
- A.3. Differentiablity conditions
- A.4. Time derivative commute with curl
- A.5. Constant of time deriative and space derivatives zero
- A.6. Equal up to a constant of time and space derivatives equal
- B. Derivatives of distributions on Time × Space d
- B.1. Time derivatives
- B.1.1. Composition with a CLM
- B.2. Space derivatives
- B.2.1. Space derivatives commute
- B.2.2. Composition with a CLM
- B.3. Time and space derivatives commute
- B.4. The spatial gradient
- B.5. The spatial divergence
- B.6. The spatial curl
- B.1. Time derivatives
iv. References #
A. Derivatives involving time and space #
A.1. Space and time derivatives in terms of curried functions #
A.2. Commuting time and space derivatives #
theorem
Space.fderiv_time_commute_fderiv_space
{d : ℕ}
{M : Type u_1}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
(f : Time → Space d → M)
(t dt : Time)
(x dx : Space d)
(hf : ContDiff ℝ 2 ↿f)
:
Derivatives along space coordinates and time commute.
theorem
Space.time_deriv_comm_space_deriv
{d : ℕ}
{i : Fin d}
{M : Type}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
{f : Time → Space d → M}
(hf : ContDiff ℝ 2 ↿f)
(t : Time)
(x : Space d)
:
Time.deriv (fun (t' : Time) => deriv i (f t') x) t = deriv i (fun (x' : Space d) => Time.deriv (fun (t' : Time) => f t' x') t) x
A.3. Differentiablity conditions #
theorem
Space.space_deriv_differentiable_time
{d : ℕ}
{i : Fin d}
{M : Type u_1}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
{f : Time → Space d → M}
(hf : ContDiff ℝ 2 ↿f)
(x : Space d)
:
Differentiable ℝ fun (t : Time) => deriv i (f t) x
theorem
Space.time_deriv_differentiable_space
{d : ℕ}
{M : Type}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
{f : Time → Space d → M}
(hf : ContDiff ℝ 2 ↿f)
(t : Time)
:
Differentiable ℝ fun (x : Space d) => Time.deriv (fun (x_1 : Time) => f x_1 x) t
theorem
Space.curl_differentiable_time
(fₜ : Time → Space → EuclideanSpace ℝ (Fin 3))
(hf : ContDiff ℝ 2 ↿fₜ)
(x : Space)
:
Differentiable ℝ fun (t : Time) => curl (fₜ t) x
A.4. Time derivative commute with curl #
theorem
Space.time_deriv_curl_commute
(fₜ : Time → Space → EuclideanSpace ℝ (Fin 3))
(t : Time)
(x : Space)
(hf : ContDiff ℝ 2 ↿fₜ)
:
Time.deriv (fun (t : Time) => curl (fₜ t) x) t = curl (fun (x : Space) => Time.deriv (fun (t : Time) => fₜ t x) t) x
Curl and time derivative commute.
A.5. Constant of time deriative and space derivatives zero #
theorem
Space.space_fun_of_time_deriv_eq_zero
{d : ℕ}
{M : Type}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
{f : Time → Space d → M}
(hf : Differentiable ℝ ↿f)
(h : ∀ (t : Time) (x : Space d), Time.deriv (fun (x_1 : Time) => f x_1 x) t = 0)
:
theorem
Space.const_of_time_deriv_space_deriv_eq_zero
{d : ℕ}
{M : Type}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
{f : Time → Space d → M}
(hf : Differentiable ℝ ↿f)
(h₁ : ∀ (t : Time) (x : Space d), Time.deriv (fun (x_1 : Time) => f x_1 x) t = 0)
(h₂ : ∀ (t : Time) (x : Space d) (i : Fin d), deriv i (f t) x = 0)
:
A.6. Equal up to a constant of time and space derivatives equal #
theorem
Space.equal_up_to_const_of_deriv_eq
{d : ℕ}
{M : Type}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
{f g : Time → Space d → M}
(hf : Differentiable ℝ ↿f)
(hg : Differentiable ℝ ↿g)
(h₁ :
∀ (t : Time) (x : Space d), Time.deriv (fun (x_1 : Time) => f x_1 x) t = Time.deriv (fun (x_1 : Time) => g x_1 x) t)
(h₂ : ∀ (t : Time) (x : Space d) (i : Fin d), deriv i (f t) x = deriv i (g t) x)
:
B. Derivatives of distributions on Time × Space d #
B.1. Time derivatives #
The time derivative of a distribution dependent on time and space.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
Space.distTimeDeriv_apply
{M : Type}
{d : ℕ}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
(f : (Time × Space d)→d[ℝ] M)
(ε : SchwartzMap (Time × Space d) ℝ)
:
theorem
Space.distTimeDeriv_apply'
{M : Type}
{d : ℕ}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
(f : (Time × Space d)→d[ℝ] M)
(ε : SchwartzMap (Time × Space d) ℝ)
:
theorem
Space.apply_fderiv_eq_distTimeDeriv
{M : Type}
{d : ℕ}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
(f : (Time × Space d)→d[ℝ] M)
(ε : SchwartzMap (Time × Space d) ℝ)
:
B.1.1. Composition with a CLM #
theorem
Space.distTimeDeriv_apply_CLM
{M M2 : Type}
{d : ℕ}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
[NormedAddCommGroup M2]
[NormedSpace ℝ M2]
(f : (Time × Space d)→d[ℝ] M)
(c : M →L[ℝ] M2)
:
B.2. Space derivatives #
noncomputable def
Space.distSpaceDeriv
{M : Type}
{d : ℕ}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
(i : Fin d)
:
The space derivative of a distribution dependent on time and space.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
Space.distSpaceDeriv_apply
{M : Type}
{d : ℕ}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
(i : Fin d)
(f : (Time × Space d)→d[ℝ] M)
(ε : SchwartzMap (Time × Space d) ℝ)
:
theorem
Space.distSpaceDeriv_apply'
{M : Type}
{d : ℕ}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
(i : Fin d)
(f : (Time × Space d)→d[ℝ] M)
(ε : SchwartzMap (Time × Space d) ℝ)
:
theorem
Space.apply_fderiv_eq_distSpaceDeriv
{M : Type}
{d : ℕ}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
(i : Fin d)
(f : (Time × Space d)→d[ℝ] M)
(ε : SchwartzMap (Time × Space d) ℝ)
:
B.2.1. Space derivatives commute #
theorem
Space.distSpaceDeriv_commute
{M : Type}
{d : ℕ}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
(i j : Fin d)
(f : (Time × Space d)→d[ℝ] M)
:
B.2.2. Composition with a CLM #
theorem
Space.distSpaceDeriv_apply_CLM
{M M2 : Type}
{d : ℕ}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
[NormedAddCommGroup M2]
[NormedSpace ℝ M2]
(i : Fin d)
(f : (Time × Space d)→d[ℝ] M)
(c : M →L[ℝ] M2)
:
B.3. Time and space derivatives commute #
theorem
Space.distTimeDeriv_commute_distSpaceDeriv
{M : Type}
{d : ℕ}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
(i : Fin d)
(f : (Time × Space d)→d[ℝ] M)
: