The field strength tensor #
@[reducible, inline]
The Field strength is a tensor F^μ^ν
which is anti-symmetric..
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
Electromagnetism.FieldStrength.mem_of_repr
{d : ℕ}
{F : (realLorentzTensor d).Tensor ![realLorentzTensor.Color.up, realLorentzTensor.Color.up]}
(h :
∀ (i : Fin ((realLorentzTensor d).repDim (![realLorentzTensor.Color.up, realLorentzTensor.Color.up] 0)))
(j : Fin ((realLorentzTensor d).repDim (![realLorentzTensor.Color.up, realLorentzTensor.Color.up] 1))),
(((TensorSpecies.Tensor.basis ![realLorentzTensor.Color.up, realLorentzTensor.Color.up]).repr F)
fun (x : Fin (Nat.succ 0).succ) =>
match x with
| 0 => i
| 1 => j) = -((TensorSpecies.Tensor.basis ![realLorentzTensor.Color.up, realLorentzTensor.Color.up]).repr F)
fun (x : Fin (Nat.succ 0).succ) =>
match x with
| 0 => j
| 1 => i)
:
theorem
Electromagnetism.FieldStrength.repr_symm
{d : ℕ}
(F : ↥(FieldStrength d))
(i j : Fin (1 + d))
(x : (realLorentzTensor d).Tensor ![realLorentzTensor.Color.up])
:
(((TensorSpecies.Tensor.basis ![realLorentzTensor.Color.up, realLorentzTensor.Color.up]).repr (↑F x))
fun (x : Fin (Nat.succ 0).succ) =>
match x with
| 0 => i
| 1 => j) = -((TensorSpecies.Tensor.basis ![realLorentzTensor.Color.up, realLorentzTensor.Color.up]).repr (↑F x))
fun (x : Fin (Nat.succ 0).succ) =>
match x with
| 0 => j
| 1 => i
@[simp]
theorem
Electromagnetism.FieldStrength.repr_diag_zero
{d : ℕ}
(F : ↥(FieldStrength d))
(i : Fin (1 + d))
(x : (realLorentzTensor d).Tensor ![realLorentzTensor.Color.up])
:
(((TensorSpecies.Tensor.basis ![realLorentzTensor.Color.up, realLorentzTensor.Color.up]).repr (↑F x))
fun (x : Fin (Nat.succ 0).succ) =>
match x with
| 0 => i
| 1 => i) = 0
noncomputable def
Electromagnetism.FieldStrength.ofElectricFieldAux
{d : ℕ}
(E : ElectricField d)
(x : SpaceTime d)
:
The field strength from an electric field as an element of ℝT[d, .up, .up]
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
Electromagnetism.FieldStrength.timeSliceLinearEquiv_ofElectricFieldAux
{d : ℕ}
(E : ElectricField d)
(t : Time)
(x : Space d)
:
SpaceTime.timeSliceLinearEquiv (ofElectricFieldAux E) t x = (TensorSpecies.Tensor.basis ![realLorentzTensor.Color.up, realLorentzTensor.Color.up]).repr.symm
(Finsupp.equivFunOnFinite.symm
fun (b : TensorSpecies.Tensor.ComponentIdx ![realLorentzTensor.Color.up, realLorentzTensor.Color.up]) =>
match b 0, b 1 with
| ⟨0, ⋯⟩, ⟨j.succ, hj⟩ => -E t x ⟨j, ⋯⟩
| ⟨j.succ, hj⟩, ⟨0, ⋯⟩ => E t x ⟨j, ⋯⟩
| x, x_1 => 0)
The field strength from an eletric field.
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
Electromagnetism.FieldStrength.ofMagneticFieldAux
(B : MagneticField)
(x : realLorentzTensor.Tensor ![realLorentzTensor.Color.up])
:
The field strength from a magnetic field as an element of ℝT[3, .up, .up]
.
This is only defined here for 4d spacetime.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
Electromagnetism.FieldStrength.timeSliceLinearEquiv_ofMagneticFieldAux
(B : MagneticField)
(t : Time)
(x : Space)
:
SpaceTime.timeSliceLinearEquiv (ofMagneticFieldAux B) t x = (TensorSpecies.Tensor.basis ![realLorentzTensor.Color.up, realLorentzTensor.Color.up]).repr.symm
(Finsupp.equivFunOnFinite.symm
fun (b : TensorSpecies.Tensor.ComponentIdx ![realLorentzTensor.Color.up, realLorentzTensor.Color.up]) =>
match b 0, b 1 with
| 1, 2 => -B t x 2
| 1, 3 => B t x 1
| 2, 3 => -B t x 0
| 2, 1 => B t x 2
| 3, 1 => -B t x 1
| 3, 2 => B t x 0
| x, x_1 => 0)
The field strength from a magnetic field.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The electric field given a field strength.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
Electromagnetism.FieldStrength.electricField_apply
{d : ℕ}
(F : ↥(FieldStrength d))
(t : Time)
(x : Space d)
(j : Fin d)
:
electricField F t x j = ((TensorSpecies.Tensor.basis ![realLorentzTensor.Color.up, realLorentzTensor.Color.up]).repr
(SpaceTime.timeSliceLinearEquiv (↑F) t x))
fun (x : Fin (Nat.succ 0).succ) =>
match x with
| 0 => ⟨↑j + 1, ⋯⟩
| 1 => 0
theorem
Electromagnetism.FieldStrength.timeSliceLinearEquiv_symm_electricField
{d : ℕ}
(F : ↥(FieldStrength d))
:
SpaceTime.timeSliceLinearEquiv.symm (electricField F) = fun (x : SpaceTime d) (j : Fin d) =>
((TensorSpecies.Tensor.basis ![realLorentzTensor.Color.up, realLorentzTensor.Color.up]).repr (↑F x))
fun (x : Fin (Nat.succ 0).succ) =>
match x with
| 0 => ⟨↑j + 1, ⋯⟩
| 1 => 0
@[simp]
theorem
Electromagnetism.FieldStrength.electricField_ofElectricField
{d : ℕ}
(E : ElectricField d)
:
The magnetic field given a field strength.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
Electromagnetism.FieldStrength.magneticField_apply
(F : ↥FieldStrength)
(t : Time)
(x : Space)
(j : Fin 3)
:
magneticField F t x j = match j with
| 0 =>
((TensorSpecies.Tensor.basis ![realLorentzTensor.Color.up, realLorentzTensor.Color.up]).repr
(SpaceTime.timeSliceLinearEquiv (↑F) t x))
fun (x : Fin (Nat.succ 0).succ) =>
match x with
| 0 => 3
| 1 => 2
| 1 =>
((TensorSpecies.Tensor.basis ![realLorentzTensor.Color.up, realLorentzTensor.Color.up]).repr
(SpaceTime.timeSliceLinearEquiv (↑F) t x))
fun (x : Fin (Nat.succ 0).succ) =>
match x with
| 0 => 1
| 1 => 3
| 2 =>
((TensorSpecies.Tensor.basis ![realLorentzTensor.Color.up, realLorentzTensor.Color.up]).repr
(SpaceTime.timeSliceLinearEquiv (↑F) t x))
fun (x : Fin (Nat.succ 0).succ) =>
match x with
| 0 => 2
| 1 => 1
theorem
Electromagnetism.FieldStrength.timeSliceLinearEquiv_symm_magneticField
(F : ↥FieldStrength)
:
SpaceTime.timeSliceLinearEquiv.symm (magneticField F) = fun (x : SpaceTime) (j : Fin 3) =>
match j with
| 0 =>
((TensorSpecies.Tensor.basis ![realLorentzTensor.Color.up, realLorentzTensor.Color.up]).repr (↑F x))
fun (x : Fin (Nat.succ 0).succ) =>
match x with
| 0 => 3
| 1 => 2
| 1 =>
((TensorSpecies.Tensor.basis ![realLorentzTensor.Color.up, realLorentzTensor.Color.up]).repr (↑F x))
fun (x : Fin (Nat.succ 0).succ) =>
match x with
| 0 => 1
| 1 => 3
| 2 =>
((TensorSpecies.Tensor.basis ![realLorentzTensor.Color.up, realLorentzTensor.Color.up]).repr (↑F x))
fun (x : Fin (Nat.succ 0).succ) =>
match x with
| 0 => 2
| 1 => 1
@[simp]
@[simp]
@[simp]
The isomorphism between the field strength and the electric and magnetic fields.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[reducible, inline]
The field strength from an electric and magnetic field.
Equations
Instances For
theorem
Electromagnetism.FieldStrength.fromElectricMagneticField_repr
(EM : ElectricField × MagneticField)
(y : SpaceTime)
:
(TensorSpecies.Tensor.basis ![realLorentzTensor.Color.up, realLorentzTensor.Color.up]).repr
(↑(fromElectricMagneticField EM) y) = Finsupp.equivFunOnFinite.symm
fun (b : TensorSpecies.Tensor.ComponentIdx ![realLorentzTensor.Color.up, realLorentzTensor.Color.up]) =>
match b 0, b 1 with
| 0, 1 => -SpaceTime.timeSliceLinearEquiv.symm EM.1 y 0
| 0, 2 => -SpaceTime.timeSliceLinearEquiv.symm EM.1 y 1
| 0, 3 => -SpaceTime.timeSliceLinearEquiv.symm EM.1 y 2
| 1, 0 => SpaceTime.timeSliceLinearEquiv.symm EM.1 y 0
| 2, 0 => SpaceTime.timeSliceLinearEquiv.symm EM.1 y 1
| 3, 0 => SpaceTime.timeSliceLinearEquiv.symm EM.1 y 2
| 1, 2 => -SpaceTime.timeSliceLinearEquiv.symm EM.2 y 2
| 1, 3 => SpaceTime.timeSliceLinearEquiv.symm EM.2 y 1
| 2, 3 => -SpaceTime.timeSliceLinearEquiv.symm EM.2 y 0
| 2, 1 => SpaceTime.timeSliceLinearEquiv.symm EM.2 y 2
| 3, 1 => -SpaceTime.timeSliceLinearEquiv.symm EM.2 y 1
| 3, 2 => SpaceTime.timeSliceLinearEquiv.symm EM.2 y 0
| x, x_1 => 0
The field strength from an electric and magnetic field written in terms of a basis.