Space time #
This file introduce 4d Minkowski spacetime.
To space and time #
The space part of spacetime.
Equations
- SpaceTime.space = { toFun := fun (x : SpaceTime d) => Lorentz.Vector.spatialPart x, map_add' := ⋯, map_smul' := ⋯ }
Instances For
The function space
is equivariant with respect to rotations.
Instances For
Coordinates #
For a given μ : Fin (1 + d)
coord μ p
is the coordinate of
p
in the direction μ
.
This is denoted 𝔁 μ p
, where 𝔁
is typed with \MCx
.
Equations
- SpaceTime.coord μ = { toFun := fun (x : SpaceTime d) => x (finSumFinEquiv.symm μ), map_add' := ⋯, map_smul' := ⋯ }
Instances For
For a given μ : Fin (1 + d)
coord μ p
is the coordinate of
p
in the direction μ
.
This is denoted 𝔁 μ p
, where 𝔁
is typed with \MCx
.
Equations
- SpaceTime.term𝔁 = Lean.ParserDescr.node `SpaceTime.term𝔁 1024 (Lean.ParserDescr.symbol "𝔁")
Instances For
Derivatives #
noncomputable def
SpaceTime.deriv
{M : Type}
[AddCommGroup M]
[Module ℝ M]
[TopologicalSpace M]
{d : ℕ}
(μ : Fin 1 ⊕ Fin d)
(f : SpaceTime d → M)
:
SpaceTime d → M
The derivative of a function SpaceTime d → ℝ
along the μ
coordinte.
Equations
- SpaceTime.deriv μ f y = (fderiv ℝ f y) (Lorentz.Vector.basis μ)
Instances For
The derivative of a function SpaceTime d → ℝ
along the μ
coordinte.
Equations
- SpaceTime.«term∂_» = Lean.ParserDescr.node `SpaceTime.«term∂_» 1024 (Lean.ParserDescr.symbol "∂_")
Instances For
theorem
SpaceTime.deriv_eq
{M : Type}
[AddCommGroup M]
[Module ℝ M]
[TopologicalSpace M]
{d : ℕ}
(μ : Fin 1 ⊕ Fin d)
(f : SpaceTime d → M)
(y : SpaceTime d)
: