Real Lorentz tensors #
Within this directory Pre
is used to denote that the definitions are preliminary and
which are used to define realLorentzTensor
.
Color for complex Lorentz tensors is decidable.
Equations
- realLorentzTensor.instDecidableEqColor realLorentzTensor.Color.up realLorentzTensor.Color.up = isTrue ⋯
- realLorentzTensor.instDecidableEqColor realLorentzTensor.Color.down realLorentzTensor.Color.down = isTrue ⋯
- realLorentzTensor.instDecidableEqColor realLorentzTensor.Color.up realLorentzTensor.Color.down = isFalse ⋯
- realLorentzTensor.instDecidableEqColor realLorentzTensor.Color.down realLorentzTensor.Color.up = isFalse ⋯
The tensor structure for complex Lorentz tensors.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Notation for a real Lorentz tensor.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Notation for a real Lorentz tensor.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Color for real Lorentz tensors is decidable.
Simplyfing repDim #
@[simp]
Simplyfing τ #
@[simp]
@[simp]
Simplification of contractions with respect to basis #
theorem
realLorentzTensor.contr_basis
{d : ℕ}
{c : (realLorentzTensor d).C}
(i : Fin ((realLorentzTensor d).repDim c))
(j : Fin ((realLorentzTensor d).repDim ((realLorentzTensor d).τ c)))
:
(realLorentzTensor d).castToField
((CategoryTheory.ConcreteCategory.hom ((realLorentzTensor d).contr.app { as := c }).hom)
(((realLorentzTensor d).basis c) i ⊗ₜ[ℝ] ((realLorentzTensor d).basis ((realLorentzTensor d).τ c)) j)) = if ↑i = ↑j then 1 else 0
theorem
realLorentzTensor.contrT_basis_repr_apply_eq_dropPairSection
{n d : ℕ}
{c : Fin (n + 1 + 1) → (realLorentzTensor d).C}
{i j : Fin (n + 1 + 1)}
(h : i ≠ j ∧ (realLorentzTensor d).τ (c i) = c j)
(t : (realLorentzTensor d).Tensor c)
(b : TensorSpecies.Tensor.ComponentIdx (c ∘ TensorSpecies.Tensor.Pure.dropPairEmb i j))
:
((TensorSpecies.Tensor.basis (c ∘ TensorSpecies.Tensor.Pure.dropPairEmb i j)).repr
((TensorSpecies.Tensor.contrT n i j h) t))
b = ∑ x : { x : TensorSpecies.Tensor.ComponentIdx c // x ∈ b.DropPairSection },
((TensorSpecies.Tensor.basis c).repr t) ↑x * if ↑(↑x i) = ↑(↑x j) then 1 else 0
theorem
realLorentzTensor.contrT_basis_repr_apply_eq_fin
{n d : ℕ}
{c : Fin (n + 1 + 1) → (realLorentzTensor d).C}
{i j : Fin (n + 1 + 1)}
{h : i ≠ j ∧ (realLorentzTensor d).τ (c i) = c j}
(t : (realLorentzTensor d).Tensor c)
(b : TensorSpecies.Tensor.ComponentIdx (c ∘ TensorSpecies.Tensor.Pure.dropPairEmb i j))
:
((TensorSpecies.Tensor.basis (c ∘ TensorSpecies.Tensor.Pure.dropPairEmb i j)).repr
((TensorSpecies.Tensor.contrT n i j h) t))
b = ∑ x : Fin (1 + d),
((TensorSpecies.Tensor.basis c).repr t)
↑((TensorSpecies.Tensor.ComponentIdx.DropPairSection.ofFinEquiv ⋯ b) (Fin.cast ⋯ x, Fin.cast ⋯ x))