Lorentz group actions related to SpaceTime #
i. Overview #
We already have a Lorentz group action on SpaceTime d, in this module
we define the induced action on Schwartz functions and distributions.
ii. Key results #
schwartzAction: Defines the action of the Lorentz group on Schwartz functions.- An instance of
DistribMulActionfor the Lorentz group acting on distributions.
iii. Table of contents #
iv. References #
A. Lorentz group action on Schwartz functions #
A.1. The definition of the action #
The Lorentz group action on Schwartz functions taking the Lorentz group to continous linear maps.
Equations
- SpaceTime.schwartzAction = { toFun := fun (Λ : ↑(LorentzGroup d)) => SchwartzMap.compCLM ℝ ⋯ ⋯, map_one' := ⋯, map_mul' := ⋯ }
Instances For
A.2. Basic properties of the action #
theorem
SpaceTime.schwartzAction_mul_apply
{d : ℕ}
(Λ₁ Λ₂ : ↑(LorentzGroup d))
(η : SchwartzMap (SpaceTime d) ℝ)
:
theorem
SpaceTime.schwartzAction_apply
{d : ℕ}
(Λ : ↑(LorentzGroup d))
(η : SchwartzMap (SpaceTime d) ℝ)
(x : SpaceTime d)
:
A.3. Injectivity of the action #
A.4. Surjectivity of the action #
B. Lorentz group action on distributions #
B.1. The SMul instance #
instance
SpaceTime.instSMulElemMatrixSumFinOfNatNatRealLorentzGroupDistribution
{n d : ℕ}
{c : Fin n → realLorentzTensor.Color}
{M : Type}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
[(realLorentzTensor d).Tensorial c M]
[T2Space M]
:
Equations
- One or more equations did not get rendered due to their size.
theorem
SpaceTime.lorentzGroup_smul_dist_apply
{n d : ℕ}
{c : Fin n → realLorentzTensor.Color}
{M : Type}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
[(realLorentzTensor d).Tensorial c M]
[T2Space M]
(Λ : ↑(LorentzGroup d))
(f : (SpaceTime d)→d[ℝ] M)
(η : SchwartzMap (SpaceTime d) ℝ)
:
B.2. The DistribMulAction instance #
instance
SpaceTime.instDistribMulActionElemMatrixSumFinOfNatNatRealLorentzGroupDistribution
{n d : ℕ}
{c : Fin n → realLorentzTensor.Color}
{M : Type}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
[(realLorentzTensor d).Tensorial c M]
[T2Space M]
:
DistribMulAction (↑(LorentzGroup d)) ((SpaceTime d)→d[ℝ] M)
Equations
- One or more equations did not get rendered due to their size.
B.3. The SMulCommClass instance #
instance
SpaceTime.instSMulCommClassRealElemMatrixSumFinOfNatNatLorentzGroupDistribution
{n d : ℕ}
{c : Fin n → realLorentzTensor.Color}
{M : Type}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
[(realLorentzTensor d).Tensorial c M]
[T2Space M]
:
SMulCommClass ℝ (↑(LorentzGroup d)) ((SpaceTime d)→d[ℝ] M)