PhysLean Documentation

PhysLean.SpaceAndTime.Space.DistConst

The constant distribution on space #

i. Overview #

In this module we define the constant distribution from Space d to a module M. That is the distribution which sends every Schwartz function to its integral multiplied by a fixed element m : M.

We show that the derivatives of this constant distribution are zero.

ii. Key results #

iii. Table of contents #

iv. References #

A. The definition of the constant distribution #

noncomputable def Space.distConst {M : Type} [NormedAddCommGroup M] [NormedSpace M] (d : ) (m : M) :

The constant distribution from Space d to a module M associated with m : M.

Equations
Instances For

    B. Derivatives of the constant distribution #

    @[simp]
    theorem Space.distDeriv_distConst {M : Type} {d : } [NormedAddCommGroup M] [NormedSpace M] (μ : Fin d) (m : M) :
    (distDeriv μ) (distConst d m) = 0
    @[simp]
    theorem Space.distGrad_distConst {d : } (m : ) :
    @[simp]