The Laplacian operator on Space d #
i. Overview #
In this module we define the Laplacian operator on functions and vector-valued
functions defined on Space d.
ii. Key results #
laplacian: The Laplacian operator on scalar functions onSpace d.laplacianVec: The Laplacian operator on vector-valued functions onSpace d.
iii. Table of contents #
- A. Laplacian on functions to ℝ
- A.1. Relation between laplacian and divergence of gradient
- B. Laplacian on vector valued functions
iv. References #
A. Laplacian on functions to ℝ #
The scalar laplacian operator.
Equations
- Space.laplacian f x = ∑ i : Fin d, (fun (i : Fin d) (x : Space d) => Space.deriv i (Space.deriv i f) x) i x
Instances For
The scalar laplacian operator.
Equations
- Space.termΔ = Lean.ParserDescr.node `Space.termΔ 1024 (Lean.ParserDescr.symbol "Δ")
Instances For
A.1. Relation between laplacian and divergence of gradient #
B. Laplacian on vector valued functions #
noncomputable def
Space.laplacianVec
{d : ℕ}
(f : Space d → EuclideanSpace ℝ (Fin d))
:
Space d → EuclideanSpace ℝ (Fin d)
The vector laplacianVec operator.
Equations
- Space.laplacianVec f x i = Space.laplacian ((fun (i : Fin d) (x : Space d) => Space.coord i (f x)) i) x
Instances For
The vector laplacianVec operator.
Equations
- Space.termΔ_1 = Lean.ParserDescr.node `Space.termΔ_1 1024 (Lean.ParserDescr.symbol "Δ")