Metrics as real Lorentz tensors #
Definitions. #
@[reducible, inline]
The metric ηᵢᵢ
as a complex Lorentz tensor.
Instances For
@[reducible, inline]
The metric ηⁱⁱ
as a complex Lorentz tensor.
Instances For
Notation #
The metric ηᵢᵢ
as a complex Lorentz tensors.
Equations
- realLorentzTensor.termη' = Lean.ParserDescr.node `realLorentzTensor.termη' 1024 (Lean.ParserDescr.symbol "η'")
Instances For
The metric ηⁱⁱ
as a complex Lorentz tensors.
Equations
- realLorentzTensor.termη = Lean.ParserDescr.node `realLorentzTensor.termη 1024 (Lean.ParserDescr.symbol "η")
Instances For
Equivalent forms of the metrics #
@[simp]
The tensor coMetric
is invariant under the action of LorentzGroup d
.
@[simp]
The tensor contrMetric
is invariant under the action of LorentzGroup d
.
theorem
realLorentzTensor.coMetric_repr_apply_eq_minkowskiMatrix
{d : ℕ}
(b : TensorSpecies.Tensor.ComponentIdx ![Color.down, Color.down])
:
((TensorSpecies.Tensor.basis ![Color.down, Color.down]).repr (coMetric d)) b = minkowskiMatrix (finSumFinEquiv.symm (b 0)) (finSumFinEquiv.symm (b 1))
theorem
realLorentzTensor.contrMetric_repr_apply_eq_minkowskiMatrix
{d : ℕ}
(b : TensorSpecies.Tensor.ComponentIdx ![Color.up, Color.up])
:
((TensorSpecies.Tensor.basis ![Color.up, Color.up]).repr (contrMetric d)) b = minkowskiMatrix (finSumFinEquiv.symm (b 0)) (finSumFinEquiv.symm (b 1))