The metric tensors #
noncomputable def
TensorSpecies.metricTensor
{k : Type}
[CommRing k]
{G : Type}
[Group G]
{S : TensorSpecies k G}
(c : S.C)
:
The metric tensor associated with a color c
.
Equations
- TensorSpecies.metricTensor c = TensorSpecies.Tensor.fromConstPair (S.metric.app { as := c })
Instances For
theorem
TensorSpecies.metricTensor_congr
{k : Type}
[CommRing k]
{G : Type}
[Group G]
{S : TensorSpecies k G}
{c c1 : S.C}
(h : c = c1)
:
@[simp]
theorem
TensorSpecies.metricTensor_invariant
{k : Type}
[CommRing k]
{G : Type}
[Group G]
{S : TensorSpecies k G}
{c : S.C}
(g : G)
:
theorem
TensorSpecies.permT_fromPairTContr_metric_metric
{k : Type}
[CommRing k]
{G : Type}
[Group G]
{S : TensorSpecies k G}
{c : S.C}
:
(Tensor.permT ![1, 0] ⋯)
(Tensor.fromPairTContr ((CategoryTheory.ConcreteCategory.hom (S.metric.app { as := c }).hom) 1)
((CategoryTheory.ConcreteCategory.hom (S.metric.app { as := S.τ c }).hom) 1)) = unitTensor c
theorem
TensorSpecies.fromPairTContr_metric_metric_eq_permT_unit
{k : Type}
[CommRing k]
{G : Type}
[Group G]
{S : TensorSpecies k G}
{c : S.C}
:
Tensor.fromPairTContr ((CategoryTheory.ConcreteCategory.hom (S.metric.app { as := c }).hom) 1)
((CategoryTheory.ConcreteCategory.hom (S.metric.app { as := S.τ c }).hom) 1) = (Tensor.permT ![1, 0] ⋯) (unitTensor c)
@[simp]
theorem
TensorSpecies.contrT_metricTensor_metricTensor
{k : Type}
[CommRing k]
{G : Type}
[Group G]
{S : TensorSpecies k G}
{c : S.C}
:
(Tensor.contrT 2 1 2 ⋯) ((Tensor.prodT (metricTensor c)) (metricTensor (S.τ c))) = (Tensor.permT ![1, 0] ⋯) (unitTensor c)
The contraction of the metric tensor with its dual gives the unit tensor.
This is the de-categorification of S.contr_metric
.
theorem
TensorSpecies.contrT_metricTensor_metricTensor_eq_dual_unit
{k : Type}
[CommRing k]
{G : Type}
[Group G]
{S : TensorSpecies k G}
{c : S.C}
:
(Tensor.contrT 2 1 2 ⋯) ((Tensor.prodT (metricTensor c)) (metricTensor (S.τ c))) = (Tensor.permT ![0, 1] ⋯) (unitTensor (S.τ c))
@[simp]
theorem
TensorSpecies.contrT_dual_metricTensor_metricTensor
{k : Type}
[CommRing k]
{G : Type}
[Group G]
{S : TensorSpecies k G}
{c : S.C}
:
(Tensor.contrT 2 1 2 ⋯) ((Tensor.prodT (metricTensor (S.τ c))) (metricTensor c)) = (Tensor.permT id ⋯) (unitTensor c)