PhysLean Documentation

PhysLean.QFT.QED.AnomalyCancellation.Even.BasisLinear

Splitting the linear solutions in the even case into two ACC-satisfying planes #

i. Overview #

We split the linear solutions of PureU1 (2 * n.succ) into two planes, where every point in either plane satisfies both the linear and cubic anomaly cancellation conditions.

ii. Key results #

iii. Table of contents #

iv. References #

A. Splitting the charges up into groups #

We have 2 * n.succ charges, which we split up in the following ways:

| evenFst j (0 to n) | evenSnd j (n.succ to n + n.succ)|

| evenShiftZero (0) | evenShiftFst j (1 to n) |
  evenShiftSnd j (n.succ to 2 * n) | evenShiftLast (2 * n.succ - 1) |

A.1. The even split: Spltting the charges up via n.succ + n.succ #

The inclusion of Fin n.succ into Fin (n.succ + n.succ) via the first n.succ, casted into Fin (2 * n.succ).

Equations
Instances For

    The inclusion of Fin n.succ into Fin (n.succ + n.succ) via the second n.succ, casted into Fin (2 * n.succ).

    Equations
    Instances For
      theorem PureU1.VectorLikeEvenPlane.ext_even {n : } (S T : Fin (2 * n.succ)) (h1 : ∀ (i : Fin n.succ), S (evenFst i) = T (evenFst i)) (h2 : ∀ (i : Fin n.succ), S (evenSnd i) = T (evenSnd i)) :
      S = T
      theorem PureU1.VectorLikeEvenPlane.sum_even {n : } (S : Fin (2 * n.succ)) :
      i : Fin (2 * n.succ), S i = i : Fin n.succ, ((S evenFst) i + (S evenSnd) i)

      A.2. The shifted even split: Spltting the charges up via 1 + (n + n + 1) #

      theorem PureU1.VectorLikeEvenPlane.n_cond₂ (n : ) :
      1 + (n + n + 1) = 2 * n.succ

      The inclusion of Fin n into Fin (1 + (n + n + 1)) via the first n, casted into Fin (2 * n.succ).

      Equations
      Instances For

        The inclusion of Fin n into Fin (1 + (n + n + 1)) via the second n, casted into Fin (2 * n.succ).

        Equations
        Instances For

          The element of Fin (1 + (n + n + 1)) corresponding to the first 1, casted into Fin (2 * n.succ).

          Equations
          Instances For

            The element of Fin (1 + (n + n + 1)) corresponding to the second 1, casted into Fin (2 * n.succ).

            Equations
            Instances For
              theorem PureU1.VectorLikeEvenPlane.sum_evenShift {n : } (S : Fin (2 * n.succ)) :
              i : Fin (2 * n.succ), S i = S evenShiftZero + S evenShiftLast + i : Fin n, ((S evenShiftFst) i + (S evenShiftSnd) i)

              A.3. Lemmas relating the two splittings #

              B. The first plane #

              B.1. The basis vectors of the first plane as charges #

              B.2. Components of the basis vectors #

              theorem PureU1.VectorLikeEvenPlane.basis_on_other {n : } {k : Fin n.succ} {j : Fin (2 * n.succ)} (h1 : j evenFst k) (h2 : j evenSnd k) :

              B.3. The basis vectors satisfy the linear ACCs #

              B.4. The basis vectors satisfy the cubic ACC #

              B.5. The basis vectors as linear solutions #

              The first part of the basis as LinSols.

              Equations
              Instances For

                B.6. The inclusion of the first plane into charges #

                A point in the span of the first part of the basis as a charge.

                Equations
                Instances For

                  B.7. Components of the inclusion into charges #

                  theorem PureU1.VectorLikeEvenPlane.P_evenFst {n : } (f : Fin n.succ) (j : Fin n.succ) :
                  P f (evenFst j) = f j
                  theorem PureU1.VectorLikeEvenPlane.P_evenSnd {n : } (f : Fin n.succ) (j : Fin n.succ) :
                  P f (evenSnd j) = -f j

                  B.8. The inclusion into charges satisfies the linear and cubic ACCs #

                  theorem PureU1.VectorLikeEvenPlane.P_linearACC {n : } (f : Fin n.succ) :
                  (accGrav (2 * n.succ)) (P f) = 0
                  theorem PureU1.VectorLikeEvenPlane.P_accCube {n : } (f : Fin n.succ) :
                  (accCube (2 * n.succ)) (P f) = 0

                  B.9. Kernel of the inclusion into charges #

                  theorem PureU1.VectorLikeEvenPlane.P_zero {n : } (f : Fin n.succ) (h : P f = 0) (i : Fin n.succ) :
                  f i = 0

                  B.10. The inclusion of the plane into linear solutions #

                  A point in the span of the first part of the basis.

                  Equations
                  Instances For
                    theorem PureU1.VectorLikeEvenPlane.P'_val {n : } (f : Fin n.succ) :
                    (P' f).val = P f

                    B.11. The basis vectors are linearly independent #

                    B.12. Every vector-like even solution is in the span of the basis of the first plane #

                    C. The vectors of the basis spanning the second plane, via the shifted even split #

                    C.2. Components of the vectors #

                    theorem PureU1.VectorLikeEvenPlane.basis!_on_other {n : } {k : Fin n} {j : Fin (2 * n.succ)} (h1 : j evenShiftFst k) (h2 : j evenShiftSnd k) :

                    C.3. The vectors satisfy the linear ACCs #

                    C.4. The vectors satisfy the cubic ACC #

                    C.6. The vectors as linear solutions #

                    The second part of the basis as LinSols.

                    Equations
                    Instances For

                      C.7. The inclusion of the second plane into charges #

                      def PureU1.VectorLikeEvenPlane.P! {n : } (f : Fin n) :

                      A point in the span of the second part of the basis as a charge.

                      Equations
                      Instances For

                        C.8. Components of the inclusion into charges #

                        theorem PureU1.VectorLikeEvenPlane.P!_evenShiftFst {n : } (f : Fin n) (j : Fin n) :
                        P! f (evenShiftFst j) = f j
                        theorem PureU1.VectorLikeEvenPlane.P!_evenShiftSnd {n : } (f : Fin n) (j : Fin n) :
                        P! f (evenShiftSnd j) = -f j

                        C.9. The inclusion into charges satisfies the cubic ACC #

                        theorem PureU1.VectorLikeEvenPlane.P!_accCube {n : } (f : Fin n) :
                        (accCube (2 * n.succ)) (P! f) = 0

                        C.10. Kernel of the inclusion into charges #

                        theorem PureU1.VectorLikeEvenPlane.P!_zero {n : } (f : Fin n) (h : P! f = 0) (i : Fin n) :
                        f i = 0

                        C.11. The inclusion of the second plane into the span of the basis #

                        C.12. The inclusion of the plane into linear solutions #

                        def PureU1.VectorLikeEvenPlane.P!' {n : } (f : Fin n) :

                        A point in the span of the second part of the basis.

                        Equations
                        Instances For
                          theorem PureU1.VectorLikeEvenPlane.P!'_val {n : } (f : Fin n) :
                          (P!' f).val = P! f

                          C.13. The basis vectors are linearly independent #

                          C.14. Properties of the basis vectors relating to the span #

                          C.15. Permutations as additions of basis vectors #

                          Swapping the elements evenShiftFst j and evenShiftSnd j is equivalent to adding a vector basis!AsCharges j.

                          D. Mixed cubic ACCs involing points from both planes #

                          theorem PureU1.VectorLikeEvenPlane.P_P_P!_accCube {n : } (g : Fin n.succ) (j : Fin n) :
                          ((accCubeTriLinSymm (P g)) (P g)) (basis!AsCharges j) = g j.succ ^ 2 - g j.castSucc ^ 2
                          theorem PureU1.VectorLikeEvenPlane.P_P!_P!_accCube {n : } (g : Fin n) (j : Fin n.succ) :
                          ((accCubeTriLinSymm (P! g)) (P! g)) (basisAsCharges j) = P! g (evenFst j) ^ 2 - P! g (evenSnd j) ^ 2

                          E. The combined basis #

                          E.1. As a map into linear solutions #

                          E.2. Inclusion of the span of the basis into charges #

                          def PureU1.VectorLikeEvenPlane.Pa {n : } (f : Fin n.succ) (g : Fin n) :

                          A point in the span of the basis as a charge.

                          Equations
                          Instances For

                            E.3. Components of the inclusion into charges #

                            theorem PureU1.VectorLikeEvenPlane.Pa_evenShiftFst {n : } (f : Fin n.succ) (g : Fin n) (j : Fin n) :
                            Pa f g (evenShiftFst j) = f j.succ + g j
                            theorem PureU1.VectorLikeEvenPlane.Pa_evenShiftSnd {n : } (f : Fin n.succ) (g : Fin n) (j : Fin n) :
                            Pa f g (evenShiftSnd j) = -f j.castSucc - g j
                            theorem PureU1.VectorLikeEvenPlane.Pa_evenShitZero {n : } (f : Fin n.succ) (g : Fin n) :

                            E.4. Kernel of the inclusion into charges #

                            theorem PureU1.VectorLikeEvenPlane.Pa_zero {n : } (f : Fin n.succ) (g : Fin n) (h : Pa f g = 0) (i : Fin n.succ) :
                            f i = 0
                            theorem PureU1.VectorLikeEvenPlane.Pa_zero! {n : } (f : Fin n.succ) (g : Fin n) (h : Pa f g = 0) (i : Fin n) :
                            g i = 0

                            E.5. The inclusion of the span of the basis into linear solutions #

                            A point in the span of the whole basis.

                            Equations
                            Instances For

                              E.6. The combined basis vectors are linearly independent #

                              E.7. Injectivity of the inclusion into linear solutions #

                              theorem PureU1.VectorLikeEvenPlane.Pa'_eq {n : } (f f' : Fin n.succ Fin n) :
                              Pa' f = Pa' f' f = f'
                              theorem PureU1.VectorLikeEvenPlane.Pa'_elim_eq_iff {n : } (g g' : Fin n.succ) (f f' : Fin n) :
                              Pa' (Sum.elim g f) = Pa' (Sum.elim g' f') Pa g f = Pa g' f'
                              theorem PureU1.VectorLikeEvenPlane.Pa_eq {n : } (g g' : Fin n.succ) (f f' : Fin n) :
                              Pa g f = Pa g' f' g = g' f = f'

                              E.8. Cardinality of the basis #

                              E.9. The basis vectors as a basis #

                              F. Every Lienar solution is the sum of a point from each plane #

                              theorem PureU1.VectorLikeEvenPlane.span_basis {n : } (S : (PureU1 (2 * n.succ)).LinSols) :
                              ∃ (g : Fin n.succ) (f : Fin n), S.val = P g + P! f

                              F.1. Relation under permutations #

                              theorem PureU1.VectorLikeEvenPlane.span_basis_swap! {n : } {S' S : (PureU1 (2 * n.succ)).LinSols} (j : Fin n) (hS : ((FamilyPermutations (2 * n.succ)).linSolRep (pairSwap (evenShiftFst j) (evenShiftSnd j))) S = S') (g : Fin n.succ) (f : Fin n) (h : S.val = P g + P! f) :
                              ∃ (g' : Fin n.succ) (f' : Fin n), S'.val = P g' + P! f' P! f' = P! f + (S.val (evenShiftSnd j) - S.val (evenShiftFst j)) basis!AsCharges j g' = g