PhysLean Documentation

PhysLean.Electromagnetism.LorentzAction

The Lorentz action on the electric and magnetic fields #

i. Overview #

We find the transformations of the electric and magnetic fields under a Lorentz boost in the x direction.

ii. Key results #

iii. Table of contents #

iv. References #

See e.g.

A. Boost of the electric field #

The electric field E in a frame F following a boost in the x direction with speed β with |β| < 1 compared to a frame F' at a point x := (t, x, y, z) is related to the electric E' and magnetic fields B' in F' at the point x' := (γ (t + β x), γ (x + β t), y, z) (corresponding to the same space-time point) by:

theorem Electromagnetism.ElectromagneticPotential.electricField_apply_x_boost (β : ) ( : |β| < 1) (A : ElectromagneticPotential) (hA : Differentiable A) (t : Time) (x : Space) :
have Λ := LorentzGroup.boost 0 β ; have t' := { val := LorentzGroup.γ β * (t.val + β * x 0) }; have x' := fun (x_1 : Fin 3) => match x_1 with | 0 => LorentzGroup.γ β * (x 0 + β * t.val) | 1 => x 1 | 2 => x 2; electricField (fun (x : SpaceTime) => Λ A (Λ⁻¹ x)) t x = fun (x : Fin 3) => match x with | 0 => A.electricField t' x' 0 | 1 => LorentzGroup.γ β * (A.electricField t' x' 1 - β * A.magneticField t' x' 2) | 2 => LorentzGroup.γ β * (A.electricField t' x' 2 + β * A.magneticField t' x' 1)

B. Boost of the magnetic field #

The magnetic field B in a frame F following a boost in the x direction with speed β with |β| < 1 compared to a frame F' at a point x := (t, x, y, z) is related to the electric E' and magnetic fields B' in F' at the point x' := (γ (t + β x), γ (x + β t), y, z) (corresponding to the same space-time point) by:

theorem Electromagnetism.ElectromagneticPotential.magneticField_apply_x_boost (β : ) ( : |β| < 1) (A : ElectromagneticPotential) (hA : Differentiable A) (t : Time) (x : Space) :
have Λ := LorentzGroup.boost 0 β ; have t' := { val := LorentzGroup.γ β * (t.val + β * x 0) }; have x' := fun (x_1 : Fin 3) => match x_1 with | 0 => LorentzGroup.γ β * (x 0 + β * t.val) | 1 => x 1 | 2 => x 2; magneticField (fun (x : SpaceTime) => Λ A (Λ⁻¹ x)) t x = fun (x : Fin 3) => match x with | 0 => A.magneticField t' x' 0 | 1 => LorentzGroup.γ β * (A.magneticField t' x' 1 + β * A.electricField t' x' 2) | 2 => LorentzGroup.γ β * (A.magneticField t' x' 2 - β * A.electricField t' x' 1)