The Lorentz action on the electric and magnetic fields #
i. Overview #
We find the transformations of the electric and magnetic fields under a Lorentz boost
in the x direction.
ii. Key results #
electricField_apply_x_boost: The transformation of the electric field under a boost in thexdirection.magneticField_apply_x_boost: The transformation of the magnetic field under a boost in thexdirection.
iii. Table of contents #
- A. Boost of the electric field
- B. Boost of the magnetic field
iv. References #
See e.g.
A. Boost of the electric field #
The electric field E in a frame F following a boost in the x direction with speed β
with |β| < 1 compared to a frame F' at a point x := (t, x, y, z) is related to the
electric E' and magnetic fields B' in F' at the point
x' := (γ (t + β x), γ (x + β t), y, z)
(corresponding to the same space-time point) by:
E_x x = E'_x x',E_y x = γ (E'_y x' - β B_z x'),E_z x = γ (E'_z x' + β B_y x').
theorem
Electromagnetism.ElectromagneticPotential.electricField_apply_x_boost
(β : ℝ)
(hβ : |β| < 1)
(A : ElectromagneticPotential)
(hA : Differentiable ℝ A)
(t : Time)
(x : Space)
:
have Λ := LorentzGroup.boost 0 β hβ;
have t' := { val := LorentzGroup.γ β * (t.val + β * x 0) };
have x' := fun (x_1 : Fin 3) =>
match x_1 with
| 0 => LorentzGroup.γ β * (x 0 + β * t.val)
| 1 => x 1
| 2 => x 2;
electricField (fun (x : SpaceTime) => Λ • A (Λ⁻¹ • x)) t x = fun (x : Fin 3) =>
match x with
| 0 => A.electricField t' x' 0
| 1 => LorentzGroup.γ β * (A.electricField t' x' 1 - β * A.magneticField t' x' 2)
| 2 => LorentzGroup.γ β * (A.electricField t' x' 2 + β * A.magneticField t' x' 1)
B. Boost of the magnetic field #
The magnetic field B in a frame F following a boost in the x direction with speed β
with |β| < 1 compared to a frame F' at a point x := (t, x, y, z) is related to the
electric E' and magnetic fields B' in F' at the point
x' := (γ (t + β x), γ (x + β t), y, z)
(corresponding to the same space-time point) by:
B_x x = B'_x x',B_y x = γ (B'_y x' + β E_z x'),B_z x = γ (B'_z x' - β E_y x').
theorem
Electromagnetism.ElectromagneticPotential.magneticField_apply_x_boost
(β : ℝ)
(hβ : |β| < 1)
(A : ElectromagneticPotential)
(hA : Differentiable ℝ A)
(t : Time)
(x : Space)
:
have Λ := LorentzGroup.boost 0 β hβ;
have t' := { val := LorentzGroup.γ β * (t.val + β * x 0) };
have x' := fun (x_1 : Fin 3) =>
match x_1 with
| 0 => LorentzGroup.γ β * (x 0 + β * t.val)
| 1 => x 1
| 2 => x 2;
magneticField (fun (x : SpaceTime) => Λ • A (Λ⁻¹ • x)) t x = fun (x : Fin 3) =>
match x with
| 0 => A.magneticField t' x' 0
| 1 => LorentzGroup.γ β * (A.magneticField t' x' 1 + β * A.electricField t' x' 2)
| 2 => LorentzGroup.γ β * (A.magneticField t' x' 2 - β * A.electricField t' x' 1)