The Hamiltonian in electromagnetism #
i. Overview #
In this module we define the canonical momentum and the Hamiltonian for the electromagnetic field in presence of a current density. We prove properties of these quantities, and express the Hamiltonian in terms of the electric and magnetic fields in the case of three spatial dimensions.
ii. Key results #
canonicalMomentum: The canonical momentum for the electromagnetic field in presence of a Lorentz current density.hamiltonian: The Hamiltonian for the electromagnetic field in presence of a Lorentz current density.hamiltonian_eq_electricField_magneticField: The Hamiltonian expressed in terms of the electric and magnetic fields.
iii. Table of contents #
- A. The canonical momentum
- A.1. The canonical momentum in terms of the kinetic term
- A.2. The canonical momentum in terms of the field strength tensor
- B. The Hamiltonian
- B.1. The hamiltonian in terms of the electric and magnetic fields
iv. References #
A. The canonical momentum #
We define the canonical momentum for the lagrangian
L(A, ∂ A) as gradient of v ↦ L(A + t v, ∂ (A + t v)) - t * L(A + v, ∂(A + v)) at v = 0
This is equivalent to ∂ L/∂ (∂_0 A).
noncomputable def
Electromagnetism.ElectromagneticPotential.canonicalMomentum
{d : ℕ}
(A : ElectromagneticPotential d)
(J : LorentzCurrentDensity d)
:
SpaceTime d → Lorentz.Vector d
The canonical momentum associated with the lagrangian of an electromagnetic potential and a Lorentz current density.
Equations
- One or more equations did not get rendered due to their size.
Instances For
A.1. The canonical momentum in terms of the kinetic term #
theorem
Electromagnetism.ElectromagneticPotential.canonicalMomentum_eq_gradient_kineticTerm
{d : ℕ}
(A : ElectromagneticPotential d)
(hA : ContDiff ℝ 2 A)
(J : LorentzCurrentDensity d)
:
A.canonicalMomentum J = fun (x : SpaceTime d) =>
gradient (fun (v : Lorentz.Vector d) => kineticTerm (fun (x : SpaceTime d) => A x + x (Sum.inl 0) • v) x) 0
A.2. The canonical momentum in terms of the field strength tensor #
theorem
Electromagnetism.ElectromagneticPotential.canonicalMomentum_eq
{d : ℕ}
(A : ElectromagneticPotential d)
(hA : ContDiff ℝ 2 A)
(J : LorentzCurrentDensity d)
:
A.canonicalMomentum J = fun (x : SpaceTime d) (μ : Fin 1 ⊕ Fin d) =>
minkowskiMatrix μ μ • (A.fieldStrengthMatrix x) (μ, Sum.inl 0)
B. The Hamiltonian #
noncomputable def
Electromagnetism.ElectromagneticPotential.hamiltonian
{d : ℕ}
(A : ElectromagneticPotential d)
(J : LorentzCurrentDensity d)
(x : SpaceTime d)
:
The Hamiltonian associated with an electromagnetic potential and a Lorentz current density.
Equations
- A.hamiltonian J x = ∑ μ : Fin 1 ⊕ Fin d, A.canonicalMomentum J x μ * SpaceTime.deriv (Sum.inl 0) A x μ - A.lagrangian J x
Instances For
B.1. The hamiltonian in terms of the electric and magnetic fields #
This only holds in three spatial dimensions.
theorem
Electromagnetism.ElectromagneticPotential.hamiltonian_eq_electricField_magneticField
(A : ElectromagneticPotential)
(hA : ContDiff ℝ 2 A)
(J : LorentzCurrentDensity)
(x : SpaceTime)
:
A.hamiltonian J x = 1 / 2 * (‖A.electricField (SpaceTime.time x) (SpaceTime.space x)‖ ^ 2 + ‖A.magneticField (SpaceTime.time x) (SpaceTime.space x)‖ ^ 2) + ∑ i : Fin 3,
A.electricField (SpaceTime.time x) (SpaceTime.space x) i * SpaceTime.deriv (Sum.inr i) A x (Sum.inl 0) + (Lorentz.Vector.minkowskiProduct (A x)) (J x)