The Lagrangian in electromagnetism #
i. Overview #
In this module we define the Lagrangian density for the electromagnetic field in presence of a current density. We prover properties of this lagrangian density, and find it's variational gradient.
ii. Key results #
lagrangian: The lagrangian density for the electromagnetic field in presence of a Lorentz current density.gradLagrangian: The variational gradient of the lagrangian density.gradLagrangian_eq_electricField_magneticField: The variational gradient of the lagrangian density expressed in Gauss's and Ampère laws.
iii. Table of contents #
- A. The Lagrangian density
- A.1. Shifts in the lagrangian under shifts in the potential
- B. The variational gradient of the lagrangian density
- B.1. The lagrangian density has a variational gradient
- B.2. The definition of,
gradLagrangian, the variational gradient of the lagrangian density - B.3. The variational gradient in terms of the gradient of the kinetic term
- B.4. The lagrangian density has the variational gradient equal to
gradLagrangian - B.5. The variational gradient in terms of the field strength tensor
- B.6. The lagrangian gradient recovering Gauss's and Ampère laws
iv. References #
A. The Lagrangian density #
The lagrangian density for the electromagnetic field in presence of a current density J is
L = 1/4 F_{μν} F^{μν} - A_μ J^μ
noncomputable def
Electromagnetism.ElectromagneticPotential.lagrangian
{d : ℕ}
(A : ElectromagneticPotential d)
(J : LorentzCurrentDensity d)
(x : SpaceTime d)
:
The lagrangian density associated with a electromagnetic potential and a Lorentz current density.
Equations
- A.lagrangian J x = A.kineticTerm x - (Lorentz.Vector.minkowskiProduct (A x)) (J x)
Instances For
A.1. Shifts in the lagrangian under shifts in the potential #
theorem
Electromagnetism.ElectromagneticPotential.lagrangian_add_const
{d : ℕ}
(A : ElectromagneticPotential d)
(J : LorentzCurrentDensity d)
(c : Lorentz.Vector d)
(x : SpaceTime d)
:
lagrangian (fun (x : SpaceTime d) => A x + c) J x = A.lagrangian J x - (Lorentz.Vector.minkowskiProduct c) (J x)
B. The variational gradient of the lagrangian density #
B.1. The lagrangian density has a variational gradient #
theorem
Electromagnetism.ElectromagneticPotential.lagrangian_hasVarGradientAt_eq_add_gradKineticTerm
{d : ℕ}
(A : ElectromagneticPotential d)
(hA : ContDiff ℝ (↑⊤) A)
(J : LorentzCurrentDensity d)
(hJ : ContDiff ℝ (↑⊤) J)
:
HasVarGradientAt (fun (A : SpaceTime d → Lorentz.Vector d) => lagrangian A J)
(A.gradKineticTerm - ∑ μ : Fin 1 ⊕ Fin d, fun (x : SpaceTime d) => (minkowskiMatrix μ μ * J x μ) • Lorentz.Vector.basis μ)
A
B.2. The definition of, gradLagrangian, the variational gradient of the lagrangian density #
noncomputable def
Electromagnetism.ElectromagneticPotential.gradLagrangian
{d : ℕ}
(A : ElectromagneticPotential d)
(J : LorentzCurrentDensity d)
:
SpaceTime d → Lorentz.Vector d
The variational gradient of the lagrangian of electromagnetic field.
Equations
- A.gradLagrangian J = varGradient (fun (q' : SpaceTime d → Lorentz.Vector d) (x : SpaceTime d) => Electromagnetism.ElectromagneticPotential.lagrangian q' J x) A
Instances For
B.3. The variational gradient in terms of the gradient of the kinetic term #
theorem
Electromagnetism.ElectromagneticPotential.gradLagrangian_eq_kineticTerm_sub
{d : ℕ}
(A : ElectromagneticPotential d)
(hA : ContDiff ℝ (↑⊤) A)
(J : LorentzCurrentDensity d)
(hJ : ContDiff ℝ (↑⊤) J)
:
A.gradLagrangian J = A.gradKineticTerm - ∑ μ : Fin 1 ⊕ Fin d, fun (x : SpaceTime d) => (minkowskiMatrix μ μ * J x μ) • Lorentz.Vector.basis μ
B.4. The lagrangian density has the variational gradient equal to gradLagrangian #
theorem
Electromagnetism.ElectromagneticPotential.lagrangian_hasVarGradientAt_gradLagrangian
{d : ℕ}
(A : ElectromagneticPotential d)
(hA : ContDiff ℝ (↑⊤) A)
(J : LorentzCurrentDensity d)
(hJ : ContDiff ℝ (↑⊤) J)
:
HasVarGradientAt (fun (A : SpaceTime d → Lorentz.Vector d) => lagrangian A J) (A.gradLagrangian J) A
B.5. The variational gradient in terms of the field strength tensor #
theorem
Electromagnetism.ElectromagneticPotential.gradLagrangian_eq_sum_fieldStrengthMatrix
{d : ℕ}
(A : ElectromagneticPotential d)
(hA : ContDiff ℝ (↑⊤) A)
(J : LorentzCurrentDensity d)
(hJ : ContDiff ℝ (↑⊤) J)
:
A.gradLagrangian J = fun (x : SpaceTime d) =>
∑ ν : Fin 1 ⊕ Fin d,
minkowskiMatrix ν ν • (∑ μ : Fin 1 ⊕ Fin d, SpaceTime.deriv μ (fun (x : SpaceTime d) => (A.fieldStrengthMatrix x) (μ, ν)) x - J x ν) • Lorentz.Vector.basis ν
B.6. The lagrangian gradient recovering Gauss's and Ampère laws #
theorem
Electromagnetism.ElectromagneticPotential.gradLagrangian_eq_electricField_magneticField
(A : ElectromagneticPotential)
(hA : ContDiff ℝ (↑⊤) A)
(J : LorentzCurrentDensity)
(hJ : ContDiff ℝ (↑⊤) J)
(x : SpaceTime)
:
A.gradLagrangian J x = (Space.div (A.electricField (SpaceTime.time x)) (SpaceTime.space x) - J.chargeDensity (SpaceTime.time x) (SpaceTime.space x)) • Lorentz.Vector.basis (Sum.inl 0) + ∑ i : Fin 3,
(Time.deriv (fun (x_1 : Time) => A.electricField x_1 (SpaceTime.space x)) (SpaceTime.time x) - Space.curl (A.magneticField (SpaceTime.time x)) (SpaceTime.space x) + J.currentDensity (SpaceTime.time x) (SpaceTime.space x))
i • Lorentz.Vector.basis (Sum.inr i)