Charges associated with a potential term #
Given a potential term T
, and a charge x : Charges
,
we can extract the set of charges associated with instances of that potential term.
Given a charges x : Charges
associated to the representations, and a potential
term T
, the charges associated with instances of that potential term.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
FTheory.SU5U1.Charges.ofPotentialTerm_subset_of_subset
{x y : Charges}
(h : x ⊆ y)
(T : SuperSymmetry.SU5.PotentialTerm)
:
Given a charges x : Charges
associated to the representations, and a potential
term T
, the charges associated with instances of that potential term.
This is a more explicit form of PotentialTerm
, which has the benifit that
it is quick with decide
, but it is not defined based on more fundamental
concepts, like ofPotentialTerm
is.
Equations
- One or more equations did not get rendered due to their size.
- y.ofPotentialTerm' SuperSymmetry.SU5.PotentialTerm.μ = Multiset.map (fun (x : ℤ × ℤ) => x.1 - x.2) (y.1.toFinset.product y.2.1.toFinset).val
- y.ofPotentialTerm' SuperSymmetry.SU5.PotentialTerm.β = Multiset.map (fun (x : ℤ × ℤ) => -x.1 + x.2) (y.2.1.toFinset.product y.2.2.1).val
- y.ofPotentialTerm' SuperSymmetry.SU5.PotentialTerm.Λ = Multiset.map (fun (x : ℤ × ℤ × ℤ) => x.1 + x.2.1 + x.2.2) (y.2.2.1.product (y.2.2.1.product y.2.2.2)).val
- y.ofPotentialTerm' SuperSymmetry.SU5.PotentialTerm.W3 = Multiset.map (fun (x : ℤ × ℤ × ℤ) => -x.1 - x.1 + x.2.1 + x.2.2) (y.2.1.toFinset.product (y.2.2.1.product y.2.2.1)).val
- y.ofPotentialTerm' SuperSymmetry.SU5.PotentialTerm.W4 = Multiset.map (fun (x : ℤ × ℤ × ℤ) => x.1 - x.2.1 - x.2.1 + x.2.2) (y.1.toFinset.product (y.2.1.toFinset.product y.2.2.1)).val
- y.ofPotentialTerm' SuperSymmetry.SU5.PotentialTerm.K1 = Multiset.map (fun (x : ℤ × ℤ × ℤ) => -x.1 + x.2.1 + x.2.2) (y.2.2.1.product (y.2.2.2.product y.2.2.2)).val
- y.ofPotentialTerm' SuperSymmetry.SU5.PotentialTerm.K2 = Multiset.map (fun (x : ℤ × ℤ × ℤ) => x.1 + x.2.1 + x.2.2) (y.1.toFinset.product (y.2.1.toFinset.product y.2.2.2)).val
- y.ofPotentialTerm' SuperSymmetry.SU5.PotentialTerm.topYukawa = Multiset.map (fun (x : ℤ × ℤ × ℤ) => -x.1 + x.2.1 + x.2.2) (y.2.1.toFinset.product (y.2.2.2.product y.2.2.2)).val
- y.ofPotentialTerm' SuperSymmetry.SU5.PotentialTerm.bottomYukawa = Multiset.map (fun (x : ℤ × ℤ × ℤ) => x.1 + x.2.1 + x.2.2) (y.1.toFinset.product (y.2.2.1.product y.2.2.2)).val
Instances For
theorem
FTheory.SU5U1.Charges.mem_ofPotentialTerm_iff_mem_ofPotentialTerm
{T : SuperSymmetry.SU5.PotentialTerm}
{n : ℤ}
{y : Charges}
: