PhysLean Documentation

PhysLean.StringTheory.FTheory.SU5U1.Charges.Basic

Charges #

One of the data structures associated with the F-theory SU(5)+U(1) GUT model are the charges assocatied with the matter fields. In this module we define the type Charges, the elements of which correspond to the collection of charges associated with the matter content of a theory.

The type such that an element corresponds to the collection of charges associated with the matter content of the theory. The order of charges is implicitly taken to be qHd, qHu, Q5, Q10

Equations
Instances For
    Equations
    • One or more equations did not get rendered due to their size.

    The explicit casting of a term of Charges to a term of Option ℤ × Option ℤ × Finset ℤ × Finset.

    Equations
    Instances For
      theorem FTheory.SU5U1.Charges.eq_of_parts {x y : Charges} (h1 : x.1 = y.1) (h2 : x.2.1 = y.2.1) (h3 : x.2.2.1 = y.2.2.1) (h4 : x.2.2.2 = y.2.2.2) :
      x = y

      ## Subsest relation

      Equations
      theorem FTheory.SU5U1.Charges.subset_def {x y : Charges} :
      x y x.1.toFinset y.1.toFinset x.2.1.toFinset y.2.1.toFinset x.2.2.1 y.2.2.1 x.2.2.2 y.2.2.2
      theorem FTheory.SU5U1.Charges.subset_trans {x y z : Charges} (hxy : x y) (hyz : y z) :
      x z
      theorem FTheory.SU5U1.Charges.subset_antisymm {x y : Charges} (hxy : x y) (hyx : y x) :
      x = y

      The empty charges #

      Card #

      The cardinality of a Charges is defined to be the sum of the cardinalities of each of the underlying finite sets of charges, with Option turned to finsets.

      Equations
      Instances For
        theorem FTheory.SU5U1.Charges.eq_of_subset_card {x y : Charges} (h : x y) (hcard : x.card = y.card) :
        x = y

        Powerset #

        The powerset of x : Option defined as {none} if x is none and {none, some y} is x is some y.

        Equations
        Instances For

          The powerset of a charge . Given a charge x : Charges it's powerset is the finite set of all Charges which are subsets of x.

          Equations
          Instances For
            theorem FTheory.SU5U1.Charges.min_exists_inductive (S : Finset Charges) (hS : S ) (n : ) (hn : S.card = n) :
            yS, y.powerset S = {y}
            theorem FTheory.SU5U1.Charges.min_exists (S : Finset Charges) (hS : S ) :
            yS, y.powerset S = {y}

            ofFinset #

            Given S5 S10 : Finset the finite set of charges associated with for which the 5-bar representation charges sit in S5 and the 10d representation charges sit in S10.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              theorem FTheory.SU5U1.Charges.qHd_mem_ofFinset (S5 S10 : Finset ) (z : ) (x2 : Option × Finset × Finset ) (hsub : (some z, x2) ofFinset S5 S10) :
              z S5
              theorem FTheory.SU5U1.Charges.qHu_mem_ofFinset (S5 S10 : Finset ) (z : ) (x1 : Option ) (x2 : Finset × Finset ) (hsub : (x1, some z, x2) ofFinset S5 S10) :
              z S5
              theorem FTheory.SU5U1.Charges.mem_ofFinset_Q5_subset (S5 S10 : Finset ) {x : Charges} (hx : x ofFinset S5 S10) :
              x.2.2.1 S5
              theorem FTheory.SU5U1.Charges.mem_ofFinset_Q10_subset (S5 S10 : Finset ) {x : Charges} (hx : x ofFinset S5 S10) :
              x.2.2.2 S10
              theorem FTheory.SU5U1.Charges.mem_ofFinset_of_subset (S5 S10 : Finset ) {x y : Charges} (h : x y) (hy : y ofFinset S5 S10) :
              x ofFinset S5 S10
              theorem FTheory.SU5U1.Charges.mem_ofFinset_iff {S5 S10 : Finset } {x : Charges} :
              x ofFinset S5 S10 x.1.toFinset S5 x.2.1.toFinset S5 x.2.2.1 S5 x.2.2.2 S10
              theorem FTheory.SU5U1.Charges.ofFinset_subset_of_subset {S5 S5' S10 S10' : Finset } (h5 : S5 S5') (h10 : S10 S10') :
              ofFinset S5 S10 ofFinset S5' S10'

              Minimal super set #

              Given a collection of charges x in ofFinset S5 S10, the minimimal charges y in ofFinset S5 S10 which are a super sets of x.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                theorem FTheory.SU5U1.Charges.insert_Q5_mem_minimalSuperSet {S5 S10 : Finset } {x : Charges} (z : ) (hz : z S5) (hznot : zx.2.2.1) :
                (x.1, x.2.1, insert z x.2.2.1, x.2.2.2) minimalSuperSet S5 S10 x
                theorem FTheory.SU5U1.Charges.insert_Q10_mem_minimalSuperSet {S5 S10 : Finset } {x : Charges} (z : ) (hz : z S10) (hznot : zx.2.2.2) :
                (x.1, x.2.1, x.2.2.1, insert z x.2.2.2) minimalSuperSet S5 S10 x
                theorem FTheory.SU5U1.Charges.exists_minimalSuperSet (S5 S10 : Finset ) {x y : Charges} (hy : y ofFinset S5 S10) (hsubset : x y) (hxneqy : x y) :
                zminimalSuperSet S5 S10 x, z y
                theorem FTheory.SU5U1.Charges.minimalSuperSet_induction_on_inductive {S5 S10 : Finset } (p : ChargesProp) (hp : ∀ (x : Charges), p xyminimalSuperSet S5 S10 x, p y) (x : Charges) (hbase : p x) (y : Charges) (hy : y ofFinset S5 S10) (hsubset : x y) (n : ) (hn : n = y.card - x.card) :
                p y

                Completions #

                A collection of charges is complete if it has all types of fields.

                Equations
                Instances For

                  Given a collection of charges x in ofFinset S5 S10, the minimimal charges y in ofFinset S5 S10 which are a super sets of x and are complete.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    theorem FTheory.SU5U1.Charges.exist_completions_subset_of_complete (S5 S10 : Finset ) (x y : Charges) (hsubset : x y) (hy : y ofFinset S5 S10) (hycomplete : y.IsComplete) :
                    zcompletions S5 S10 x, z y