Charges #
One of the data structures associated with the F-theory SU(5)+U(1) GUT model
are the charges assocatied with the matter fields. In this module we define
the type Charges
, the elements of which correspond to the collection of
charges associated with the matter content of a theory.
The type such that an element corresponds to the collection of charges associated with the matter content of the theory. The order of charges is implicitly taken to be qHd, qHu, Q5, Q10
Instances For
Equations
Equations
- One or more equations did not get rendered due to their size.
## Subsest relation
Equations
- FTheory.SU5U1.Charges.hasSSubset = { SSubset := fun (x y : FTheory.SU5U1.Charges) => x ⊆ y ∧ x ≠ y }
Equations
The empty charges #
Card #
Powerset #
ofFinset #
Given S5 S10 : Finset ℤ
the finite set of charges associated with
for which the 5-bar representation charges sit in S5
and
the 10d representation charges sit in S10
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Minimal super set #
theorem
FTheory.SU5U1.Charges.self_subset_mem_minimalSuperSet
(S5 S10 : Finset ℤ)
(x y : Charges)
(hy : y ∈ minimalSuperSet S5 S10 x)
:
@[simp]
theorem
FTheory.SU5U1.Charges.self_not_mem_minimalSuperSet
(S5 S10 : Finset ℤ)
(x : Charges)
:
x ∉ minimalSuperSet S5 S10 x
theorem
FTheory.SU5U1.Charges.self_neq_mem_minimalSuperSet
(S5 S10 : Finset ℤ)
(x y : Charges)
(hy : y ∈ minimalSuperSet S5 S10 x)
:
theorem
FTheory.SU5U1.Charges.minimalSuperSet_induction_on_inductive
{S5 S10 : Finset ℤ}
(p : Charges → Prop)
(hp : ∀ (x : Charges), p x → ∀ y ∈ minimalSuperSet S5 S10 x, p y)
(x : Charges)
(hbase : p x)
(y : Charges)
(hy : y ∈ ofFinset S5 S10)
(hsubset : x ⊆ y)
(n : ℕ)
(hn : n = y.card - x.card)
:
p y
Completions #
theorem
FTheory.SU5U1.Charges.completions_eq_singleton_of_complete
{S5 S10 : Finset ℤ}
(x : Charges)
(hcomplete : x.IsComplete)
:
@[simp]
theorem
FTheory.SU5U1.Charges.self_mem_completions_iff_isComplete
{S5 S10 : Finset ℤ}
(x : Charges)
:
theorem
FTheory.SU5U1.Charges.mem_completions_isComplete
{S5 S10 : Finset ℤ}
{x y : Charges}
(hx : y ∈ completions S5 S10 x)
:
theorem
FTheory.SU5U1.Charges.self_subset_mem_completions
(S5 S10 : Finset ℤ)
(x y : Charges)
(hy : y ∈ completions S5 S10 x)
:
theorem
FTheory.SU5U1.Charges.exist_completions_subset_of_complete
(S5 S10 : Finset ℤ)
(x y : Charges)
(hsubset : x ⊆ y)
(hy : y ∈ ofFinset S5 S10)
(hycomplete : y.IsComplete)
:
∃ z ∈ completions S5 S10 x, z ⊆ y