Charges assocated with field labels #
Given a field label F
, and a charge x : Charges
,
we can extract the set of charges associated with that field label.
This is done by the function ofFieldLabel
, which returns a Finset ℤ
.
Given an x : Charges
, the charges associated with a given FieldLabel
.
Equations
- x.ofFieldLabel SuperSymmetry.SU5.FieldLabel.fiveBarHd = x.1.toFinset
- x.ofFieldLabel SuperSymmetry.SU5.FieldLabel.fiveBarHu = x.2.1.toFinset
- x.ofFieldLabel SuperSymmetry.SU5.FieldLabel.fiveBarMatter = x.2.2.1
- x.ofFieldLabel SuperSymmetry.SU5.FieldLabel.tenMatter = x.2.2.2
- x.ofFieldLabel SuperSymmetry.SU5.FieldLabel.fiveHd = Finset.map { toFun := Neg.neg, inj' := FTheory.SU5U1.Charges.ofFieldLabel._proof_1 } x.1.toFinset
- x.ofFieldLabel SuperSymmetry.SU5.FieldLabel.fiveHu = Finset.map { toFun := Neg.neg, inj' := FTheory.SU5U1.Charges.ofFieldLabel._proof_1 } x.2.1.toFinset
- x.ofFieldLabel SuperSymmetry.SU5.FieldLabel.fiveMatter = Finset.map { toFun := Neg.neg, inj' := FTheory.SU5U1.Charges.ofFieldLabel._proof_1 } x.2.2.1
Instances For
@[simp]
@[simp]
@[simp]
theorem
FTheory.SU5U1.Charges.ofFieldLabel_subset_of_subset
{x y : Charges}
(h : x ⊆ y)
(F : SuperSymmetry.SU5.FieldLabel)
:
theorem
FTheory.SU5U1.Charges.ext_ofFieldLabel
{x y : Charges}
(h : ∀ (F : SuperSymmetry.SU5.FieldLabel), x.ofFieldLabel F = y.ofFieldLabel F)
:
Two charges are equal if they are equal on all field labels.