PhysLean Documentation

PhysLean.StringTheory.FTheory.SU5.Quanta.Basic

Quanta of representations #

i. Overview #

In SU(5) ร— U(1) F-theory theory, each 5-bar and 10d representation carries with it the quantum numbers of their U(1) charges and their fluxes.

In this module we define the data structure for these quanta and properties thereof.

ii. Key results #

iii. Table of contents #

iv. References #

A reference for the anomaly cancellation conditions is arXiv:1401.5084 equation 22.

A. The Quanta structure #

structure FTheory.SU5.Quanta (๐“ฉ : Type := โ„ค) :

The quanta associated with the representations in a SU(5) x U(1) F-theory. This contains the value of the charges and the flux integers (M, N) for the 5-bar matter content and the 10d matter content, and the charges of the Hd and Hu particles (there values of (M,N) are not included as they are forced to be (0, 1) and (0, -1) respectively.

  • qHd : Option ๐“ฉ

    The charge of the Hd matter field.

  • qHu : Option ๐“ฉ

    The negative charge of the Hu matter field. In other words the charge of the Hu considered as a 5-bar field.

  • F : FiveQuanta ๐“ฉ

    The quanta carried by the 5-bar matter fields.

  • T : TenQuanta ๐“ฉ

    The quanta carried by the 10d matter fields.

Instances For

    A.1. Repr instance on Quanta #

    unsafe instance FTheory.SU5.Quanta.instRepr {๐“ฉ : Type} [Repr ๐“ฉ] :
    Repr (Quanta ๐“ฉ)
    Equations
    • One or more equations did not get rendered due to their size.

    A.2. Extensionality lemma #

    theorem FTheory.SU5.Quanta.ext {๐“ฉ : Type} {x y : Quanta ๐“ฉ} (h1 : x.qHd = y.qHd) (h2 : x.qHu = y.qHu) (h3 : x.F = y.F) (h4 : x.T = y.T) :
    x = y
    theorem FTheory.SU5.Quanta.ext_iff {๐“ฉ : Type} {x y : Quanta ๐“ฉ} :
    x = y โ†” x.qHd = y.qHd โˆง x.qHu = y.qHu โˆง x.F = y.F โˆง x.T = y.T

    A.3. Decidable equality instance #

    instance FTheory.SU5.Quanta.instDecidableEq {๐“ฉ : Type} [DecidableEq ๐“ฉ] :
    DecidableEq (Quanta ๐“ฉ)
    Equations

    A.4. Map to the underlying ChargeSpectrum #

    def FTheory.SU5.Quanta.toCharges {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : Quanta ๐“ฉ) :

    The underlying ChargeSpectrum of a Quanta.

    Equations
    Instances For
      theorem FTheory.SU5.Quanta.toCharges_qHd {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : Quanta ๐“ฉ) :
      theorem FTheory.SU5.Quanta.toCharges_qHu {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : Quanta ๐“ฉ) :

      B. The reduction of a Quanta #

      def FTheory.SU5.Quanta.reduce {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : Quanta ๐“ฉ) :
      Quanta ๐“ฉ

      The reduce of Quanta is a new Quanta with all the fluxes corresponding to the same charge (i.e. representation) added together.

      Equations
      Instances For

        C. Lifting a charge spectrum to quanta with no exotics or zero fluxes #

        def FTheory.SU5.Quanta.liftCharge {๐“ฉ : Type} [DecidableEq ๐“ฉ] (c : SuperSymmetry.SU5.ChargeSpectrum ๐“ฉ) :
        Multiset (Quanta ๐“ฉ)

        Lifting a charge spectrum to quanta which do not have exotics and which have no zero flux.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          C.1. Simplification of membership in the liftCharge multiset #

          C.2. Charge spectrum of a lifted quanta #

          theorem FTheory.SU5.Quanta.toCharges_of_mem_liftCharge {๐“ฉ : Type} [DecidableEq ๐“ฉ] {c : SuperSymmetry.SU5.ChargeSpectrum ๐“ฉ} {x : Quanta ๐“ฉ} (h : x โˆˆ liftCharge c) :

          D. Anomaly cancellation conditions #

          There are two anomaly cancellation conditions in the SU(5)ร—U(1) model which involve the U(1) charges. These are

          According to arXiv:1401.5084 it is unclear whether this second condition should necessarily be imposed.

          D.1. The anomaly coefficient of Hd #

          def FTheory.SU5.Quanta.HdAnomalyCoefficient {๐“ฉ : Type} [CommRing ๐“ฉ] (qHd : Option ๐“ฉ) :
          ๐“ฉ ร— ๐“ฉ

          The pair of anomaly cancellation coefficients associated with the Hd particle.

          Equations
          Instances For
            @[simp]
            theorem FTheory.SU5.Quanta.HdAnomalyCoefficient_map {๐“ฉ ๐“ฉ1 : Type} [CommRing ๐“ฉ] [CommRing ๐“ฉ1] (f : ๐“ฉ โ†’+* ๐“ฉ1) (qHd : Option ๐“ฉ) :

            D.2. The anomaly coefficient of Hu #

            def FTheory.SU5.Quanta.HuAnomalyCoefficient {๐“ฉ : Type} [CommRing ๐“ฉ] (qHu : Option ๐“ฉ) :
            ๐“ฉ ร— ๐“ฉ

            The pair of anomaly cancellation coefficients associated with the Hu particle.

            Equations
            Instances For
              @[simp]
              theorem FTheory.SU5.Quanta.HuAnomalyCoefficient_map {๐“ฉ ๐“ฉ1 : Type} [CommRing ๐“ฉ] [CommRing ๐“ฉ1] (f : ๐“ฉ โ†’+* ๐“ฉ1) (qHu : Option ๐“ฉ) :

              D.3. The anomaly cancellation condition propositions #

              def FTheory.SU5.Quanta.LinearAnomalyCancellation {๐“ฉ : Type} [CommRing ๐“ฉ] (Q : Quanta ๐“ฉ) :

              The linear anomaly cancellation condition, corresponding to โˆ‘แตข qแตข Nแตข + โˆ‘โ‚ qโ‚ Nโ‚ = 0 where the first sum is over all 5-bar representations and the second is over all 10d representations.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                def FTheory.SU5.Quanta.QuarticAnomalyCancellation {๐“ฉ : Type} [CommRing ๐“ฉ] (Q : Quanta ๐“ฉ) :

                The quartic anomaly cancellation condition, corresponding to โˆ‘แตข qแตขยฒ Nแตข + 3 * โˆ‘โ‚ qโ‚ยฒ Nโ‚ = 0 where the first sum is over all 5-bar representations and the second is over all 10d representations.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For

                  D.3.1. The propositions are decidable #

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Equations
                  • One or more equations did not get rendered due to their size.