PhysLean Documentation

PhysLean.StringTheory.FTheory.SU5.Quanta.TenQuanta

Quanta of 10d representations #

i. Overview #

The 10d representations of the SU(5)ร—U(1) carry the quantum numbers of their U(1) charges and their fluxes.

In this module we define the data structure for these quanta and properties thereof.

ii. Key results #

iii. Table of contents #

iv. References #

A reference for the anomaly cancellation conditions is arXiv:1401.5084.

A. The definition of TenQuanta #

@[reducible, inline]
abbrev FTheory.SU5.TenQuanta (๐“ฉ : Type := โ„ค) :

The quanta of w0d representations corresponding to a multiset of (q, M, N) for each particle. (M, N) are defined in the FluxesFive module.

Equations
Instances For

    A.1. The map to underlying fluxes #

    def FTheory.SU5.TenQuanta.toFluxesTen {๐“ฉ : Type} (x : TenQuanta ๐“ฉ) :

    The underlying FluxesTen from a TenQuanta.

    Equations
    Instances For

      A.2. The map to underlying charges #

      def FTheory.SU5.TenQuanta.toCharges {๐“ฉ : Type} (x : TenQuanta ๐“ฉ) :
      Multiset ๐“ฉ

      The underlying Multiset charges from a TenQuanta.

      Equations
      Instances For

        A.3. The map from charges to fluxes #

        def FTheory.SU5.TenQuanta.toChargeMap {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : TenQuanta ๐“ฉ) :
        ๐“ฉ โ†’ Fluxes

        The map which takes a charge to the overall flux it corresponds to in a TenQuanta.

        Equations
        Instances For
          theorem FTheory.SU5.TenQuanta.toChargeMap_of_not_mem {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : TenQuanta ๐“ฉ) {z : ๐“ฉ} (h : z โˆ‰ x.toCharges) :

          B. The reduction of a TenQuanta #

          def FTheory.SU5.TenQuanta.reduce {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : TenQuanta ๐“ฉ) :
          TenQuanta ๐“ฉ

          The reduce of TenQuanta is a new TenQuanta with all the fluxes corresponding to the same charge (i.e. representation) added together.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            B.1. The reduced TenQuanta has no duplicate elements #

            theorem FTheory.SU5.TenQuanta.reduce_nodup {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : TenQuanta ๐“ฉ) :
            @[simp]
            theorem FTheory.SU5.TenQuanta.reduce_dedup {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : TenQuanta ๐“ฉ) :

            B.2. The underlying charges of the reduced TenQuanta are the deduped charges #

            theorem FTheory.SU5.TenQuanta.reduce_toCharges {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : TenQuanta ๐“ฉ) :

            B.3. Membership condition on the reduced TenQuanta #

            theorem FTheory.SU5.TenQuanta.mem_reduce_iff {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : TenQuanta ๐“ฉ) (p : ๐“ฉ ร— Fluxes) :
            p โˆˆ x.reduce โ†” p.1 โˆˆ x.toCharges โˆง p.2 = (Multiset.map (fun (y : ๐“ฉ ร— Fluxes) => y.2) (Multiset.filter (fun (f : ๐“ฉ ร— Fluxes) => f.1 = p.1) x)).sum

            B.4. Filter of the reduced TenQuanta by a charge #

            theorem FTheory.SU5.TenQuanta.reduce_filter {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : TenQuanta ๐“ฉ) (q : ๐“ฉ) (h : q โˆˆ x.toCharges) :
            Multiset.filter (fun (f : ๐“ฉ ร— Fluxes) => f.1 = q) x.reduce = {(q, (Multiset.map (fun (y : ๐“ฉ ร— Fluxes) => y.2) (Multiset.filter (fun (f : ๐“ฉ ร— Fluxes) => f.1 = q) x)).sum)}

            B.5. The reduction is idempotent #

            @[simp]
            theorem FTheory.SU5.TenQuanta.reduce_reduce {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : TenQuanta ๐“ฉ) :

            B.6. Preservation of certain sums under reduction #

            theorem FTheory.SU5.TenQuanta.reduce_sum_eq_sum_toCharges {๐“ฉ : Type} [DecidableEq ๐“ฉ] {M : Type u_1} [AddCommMonoid M] (x : TenQuanta ๐“ฉ) (f : ๐“ฉ โ†’ Fluxes โ†’+ M) :
            (Multiset.map (fun (x : ๐“ฉ ร— Fluxes) => match x with | (q, x) => (f q) x) x.reduce).sum = (Multiset.map (fun (x : ๐“ฉ ร— Fluxes) => match x with | (q, x) => (f q) x) x).sum

            B.7. Reduction does nothing if no duplicate charges #

            theorem FTheory.SU5.TenQuanta.reduce_eq_self_of_ofCharges_nodup {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : TenQuanta ๐“ฉ) (h : x.toCharges.Nodup) :
            x.reduce = x

            B.8. The charge map is preserved by reduction #

            B.9. A fluxes in the reduced TenQuanta is a sum of fluxes in the original TenQuanta #

            B.10. No exotics condition on the reduced TenQuanta #

            B.10.1. Number of chiral U #

            B.10.2. Number of anti-chiral U #

            B.10.3. Number of chiral Q #

            B.10.4. Number of anti-chiral Q #

            B.10.5. Number of chiral E #

            B.10.6. Number of anti-chiral E #

            B.10.7. The NoExotics condition on the reduced TenQuanta #

            B.11. Reduce member of FLuxesTen.elemsNoExotics #

            C. Decomposition of a TenQuanta into basic fluxes #

            C.1. Decomposition of fluxes #

            The decomposition of a relevant flux into โŸจ1, 0โŸฉ, โŸจ1, 1โŸฉ and โŸจ1, -1โŸฉ .

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For

              C.2. Decomposition of a TenQuanta (with no exotics) #

              def FTheory.SU5.TenQuanta.decompose {๐“ฉ : Type} (x : TenQuanta ๐“ฉ) :
              TenQuanta ๐“ฉ

              The decomposition of a TenQuanta into a TenQuanta which has the same reduce by has fluxes {โŸจ1, 0โŸฉ, โŸจ1, 0โŸฉ, โŸจ1, 0โŸฉ} or {โŸจ1, 1โŸฉ, โŸจ1, -1โŸฉ, โŸจ1, 0โŸฉ} only.

              This only works for fluxes which have no exotics or zeros.

              Equations
              Instances For

                C.2.1. Decomposition distributes over addition #

                theorem FTheory.SU5.TenQuanta.decompose_add {๐“ฉ : Type} (x y : TenQuanta ๐“ฉ) :

                C.2.2. Decomposition commutes with filtering charges #

                theorem FTheory.SU5.TenQuanta.decompose_filter_charge {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : TenQuanta ๐“ฉ) (q : ๐“ฉ) :
                Multiset.filter (fun (p : ๐“ฉ ร— Fluxes) => p.1 = q) x.decompose = decompose (Multiset.filter (fun (p : ๐“ฉ ร— Fluxes) => p.1 = q) x)

                C.2.3. Decomposition preserves the charge map #

                C.2.4. Decomposition preserves the charges #

                C.2.5. Decomposition preserves the reduction #

                C.2.6. Fluxes of the decomposition of a TenQuanta #

                theorem FTheory.SU5.TenQuanta.decompose_toFluxesTen {๐“ฉ : Type} (x : TenQuanta ๐“ฉ) (hx : x.toFluxesTen โˆˆ FluxesTen.elemsNoExotics) :
                x.decompose.toFluxesTen = {{ M := 1, N := 0 }, { M := 1, N := 0 }, { M := 1, N := 0 }} โˆจ x.decompose.toFluxesTen = {{ M := 1, N := 1 }, { M := 1, N := -1 }, { M := 1, N := 0 }}

                D. Lifting charges to TenQuanta #

                D.1. liftCharge c: multiset of ten-quanta for a finite set of charges c with no exotics #

                This is an efficient definition, we will later show that it gives the correct answer

                def FTheory.SU5.TenQuanta.liftCharge {๐“ฉ : Type} [DecidableEq ๐“ฉ] (c : Finset ๐“ฉ) :
                Multiset (TenQuanta ๐“ฉ)

                Given a finite set of charges c the TenQuanta which do not have exotics, duplicate charges or zero fluxes, which map down to c. This is defined to be as efficient as possible.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For

                  D.2. TenQuanta in liftCharge c have a finite set of charges c #

                  theorem FTheory.SU5.TenQuanta.toCharge_toFinset_of_mem_liftCharge {๐“ฉ : Type} [DecidableEq ๐“ฉ] (c : Finset ๐“ฉ) {x : TenQuanta ๐“ฉ} (h : x โˆˆ liftCharge c) :

                  D.3. TenQuanta in liftCharge c have no duplicate charges #

                  theorem FTheory.SU5.TenQuanta.toCharges_nodup_of_mem_liftCharge {๐“ฉ : Type} [DecidableEq ๐“ฉ] (c : Finset ๐“ฉ) {x : TenQuanta ๐“ฉ} (h : x โˆˆ liftCharge c) :

                  D.4. Membership in liftCharge c iff is reduction of TenQuanta with given fluxes #

                  theorem FTheory.SU5.TenQuanta.exists_toCharges_toFluxesTen_of_mem_liftCharge {๐“ฉ : Type} [DecidableEq ๐“ฉ] (c : Finset ๐“ฉ) {x : TenQuanta ๐“ฉ} (h : x โˆˆ liftCharge c) :
                  โˆƒ (a : TenQuanta ๐“ฉ), a.reduce = x โˆง a.toCharges.toFinset = c โˆง (a.toFluxesTen = {{ M := 1, N := 0 }, { M := 1, N := 0 }, { M := 1, N := 0 }} โˆจ a.toFluxesTen = {{ M := 1, N := 1 }, { M := 1, N := -1 }, { M := 1, N := 0 }})
                  theorem FTheory.SU5.TenQuanta.mem_liftCharge_of_exists_toCharges_toFluxesTen {๐“ฉ : Type} [DecidableEq ๐“ฉ] (c : Finset ๐“ฉ) {x : TenQuanta ๐“ฉ} (h : โˆƒ (a : TenQuanta ๐“ฉ), a.reduce = x โˆง a.toCharges.toFinset = c โˆง (a.toFluxesTen = {{ M := 1, N := 0 }, { M := 1, N := 0 }, { M := 1, N := 0 }} โˆจ a.toFluxesTen = {{ M := 1, N := 1 }, { M := 1, N := -1 }, { M := 1, N := 0 }})) :
                  theorem FTheory.SU5.TenQuanta.mem_liftCharge_iff_exists {๐“ฉ : Type} [DecidableEq ๐“ฉ] (c : Finset ๐“ฉ) {x : TenQuanta ๐“ฉ} :
                  x โˆˆ liftCharge c โ†” โˆƒ (a : TenQuanta ๐“ฉ), a.reduce = x โˆง a.toCharges.toFinset = c โˆง (a.toFluxesTen = {{ M := 1, N := 0 }, { M := 1, N := 0 }, { M := 1, N := 0 }} โˆจ a.toFluxesTen = {{ M := 1, N := 1 }, { M := 1, N := -1 }, { M := 1, N := 0 }})

                  D.5. TenQuanta in liftCharge c do not have zero fluxes #

                  theorem FTheory.SU5.TenQuanta.hasNoZero_of_mem_liftCharge {๐“ฉ : Type} [DecidableEq ๐“ฉ] (c : Finset ๐“ฉ) {x : TenQuanta ๐“ฉ} (h : x โˆˆ liftCharge c) :

                  D.6. TenQuanta in liftCharge c have no exotics #

                  theorem FTheory.SU5.TenQuanta.noExotics_of_mem_liftCharge {๐“ฉ : Type} [DecidableEq ๐“ฉ] (c : Finset ๐“ฉ) (F : TenQuanta ๐“ฉ) (h : F โˆˆ liftCharge c) :

                  D.7. Membership in liftCharge c iff have no exotics, no zero fluxes, and charges c #

                  theorem FTheory.SU5.TenQuanta.mem_liftCharge_of_mem_noExotics_hasNoZero {๐“ฉ : Type} [DecidableEq ๐“ฉ] (c : Finset ๐“ฉ) {x : TenQuanta ๐“ฉ} (h1 : x.toFluxesTen.NoExotics) (h2 : x.toFluxesTen.HasNoZero) (h3 : x.toCharges.toFinset = c) (h4 : x.toCharges.Nodup) :

                  D.8. liftCharge c is preserved under a map if reduced #

                  theorem FTheory.SU5.TenQuanta.map_liftCharge {๐“ฉ ๐“ฉ1 : Type} [DecidableEq ๐“ฉ] [DecidableEq ๐“ฉ1] [CommRing ๐“ฉ] [CommRing ๐“ฉ1] (f : ๐“ฉ โ†’+* ๐“ฉ1) (c : Finset ๐“ฉ) (F : TenQuanta ๐“ฉ) (h : F โˆˆ liftCharge c) :
                  reduce (Multiset.map (fun (y : ๐“ฉ ร— Fluxes) => (f y.1, y.2)) F) โˆˆ liftCharge (Finset.image (โ‡‘f) c)

                  E. Anomaly cancellation coefficients #

                  E.1. Anomaly coefficients of a TenQuanta #

                  def FTheory.SU5.TenQuanta.anomalyCoefficient {๐“ฉ : Type} [CommRing ๐“ฉ] (F : TenQuanta ๐“ฉ) :
                  ๐“ฉ ร— ๐“ฉ

                  The anomaly coefficient of a TenQuanta is given by the pair of integers: (โˆ‘แตข qแตข Nแตข, 3 * โˆ‘แตข qแตขยฒ Nแตข).

                  The first components is for the mixed U(1)-MSSM, see equation (22) of arXiv:1401.5084. The second component is for the mixed U(1)Y-U(1)-U(1) gauge anomaly, see equation (23) of arXiv:1401.5084.

                  Equations
                  Instances For

                    E.2. Anomaly coefficients under a map #

                    @[simp]
                    theorem FTheory.SU5.TenQuanta.anomalyCoefficient_of_map {๐“ฉ ๐“ฉ1 : Type} [CommRing ๐“ฉ] [CommRing ๐“ฉ1] (f : ๐“ฉ โ†’+* ๐“ฉ1) (F : TenQuanta ๐“ฉ) :
                    anomalyCoefficient (Multiset.map (fun (y : ๐“ฉ ร— Fluxes) => (f y.1, y.2)) F) = (f.prodMap f) F.anomalyCoefficient

                    E.3. Anomaly coefficients is preserved under reduce #