PhysLean Documentation

PhysLean.StringTheory.FTheory.SU5.Quanta.TenQuanta

Quanta of 10d representations #

The 10d representations of the SU(5)ร—U(1) carry the quantum numbers of their U(1) charges and their fluxes.

In this module we define the data structure for these quanta and properties thereof.

##ย Key definitions

Key theorems #

@[reducible, inline]
abbrev FTheory.SU5.TenQuanta (๐“ฉ : Type := โ„ค) :

The quanta of w0d representations corresponding to a multiset of (q, M, N) for each partcile. (M, N) are defined in the FluxesFive module.

Equations
Instances For
    def FTheory.SU5.TenQuanta.toFluxesTen {๐“ฉ : Type} (x : TenQuanta ๐“ฉ) :

    The underlying FluxesTen from a TenQuanta.

    Equations
    Instances For
      def FTheory.SU5.TenQuanta.toCharges {๐“ฉ : Type} (x : TenQuanta ๐“ฉ) :
      Multiset ๐“ฉ

      The underlying Multiset charges from a TenQuanta.

      Equations
      Instances For

        Reduce #

        def FTheory.SU5.TenQuanta.reduce {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : TenQuanta ๐“ฉ) :
        TenQuanta ๐“ฉ

        The reduce of TenQuanta is a new TenQuanta with all the fluxes corresponding to the same charge (i.e. represenation) added together.

        Equations
        Instances For
          theorem FTheory.SU5.TenQuanta.reduce_nodup {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : TenQuanta ๐“ฉ) :
          @[simp]
          theorem FTheory.SU5.TenQuanta.reduce_dedup {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : TenQuanta ๐“ฉ) :
          theorem FTheory.SU5.TenQuanta.reduce_toCharges {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : TenQuanta ๐“ฉ) :
          theorem FTheory.SU5.TenQuanta.reduce_eq_val {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : TenQuanta ๐“ฉ) :
          x.reduce = (Finset.image (fun (q10 : ๐“ฉ) => (q10, (Multiset.map (fun (y : ๐“ฉ ร— โ„ค ร— โ„ค) => y.2) (Multiset.filter (fun (f : ๐“ฉ ร— โ„ค ร— โ„ค) => f.1 = q10) x)).sum)) x.toCharges.toFinset).val
          theorem FTheory.SU5.TenQuanta.mem_reduce_iff {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : TenQuanta ๐“ฉ) (p : ๐“ฉ ร— โ„ค ร— โ„ค) :
          p โˆˆ x.reduce โ†” p.1 โˆˆ x.toCharges โˆง p.2 = (Multiset.map (fun (y : ๐“ฉ ร— โ„ค ร— โ„ค) => y.2) (Multiset.filter (fun (f : ๐“ฉ ร— โ„ค ร— โ„ค) => f.1 = p.1) x)).sum
          theorem FTheory.SU5.TenQuanta.reduce_filter {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : TenQuanta ๐“ฉ) (q : ๐“ฉ) (h : q โˆˆ x.toCharges) :
          Multiset.filter (fun (f : ๐“ฉ ร— โ„ค ร— โ„ค) => f.1 = q) x.reduce = {(q, (Multiset.map (fun (y : ๐“ฉ ร— โ„ค ร— โ„ค) => y.2) (Multiset.filter (fun (f : ๐“ฉ ร— โ„ค ร— โ„ค) => f.1 = q) x)).sum)}
          @[simp]
          theorem FTheory.SU5.TenQuanta.reduce_reduce {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : TenQuanta ๐“ฉ) :
          theorem FTheory.SU5.TenQuanta.reduce_sum_eq_sum_toCharges {๐“ฉ : Type} [DecidableEq ๐“ฉ] {M : Type u_1} [AddCommMonoid M] (x : TenQuanta ๐“ฉ) (f : ๐“ฉ โ†’ โ„ค ร— โ„ค โ†’+ M) :
          (Multiset.map (fun (x : ๐“ฉ ร— โ„ค ร— โ„ค) => match x with | (q, x) => (f q) x) x.reduce).sum = (Multiset.map (fun (x : ๐“ฉ ร— โ„ค ร— โ„ค) => match x with | (q, x) => (f q) x) x).sum
          theorem FTheory.SU5.TenQuanta.reduce_eq_self_of_ofCharges_nodup {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : TenQuanta ๐“ฉ) (h : x.toCharges.Nodup) :
          x.reduce = x

          Anomaly cancellation #

          def FTheory.SU5.TenQuanta.anomalyCoefficent {๐“ฉ : Type} [CommRing ๐“ฉ] (F : TenQuanta ๐“ฉ) :
          ๐“ฉ ร— ๐“ฉ

          The anomaly coefficent of a TenQuanta is given by the pair of integers: (โˆ‘แตข qแตข Nแตข, 3 * โˆ‘แตข qแตขยฒ Nแตข).

          The first components is for the mixed U(1)-MSSM, see equation (22) of arXiv:1401.5084. The second component is for the mixed U(1)Y-U(1)-U(1) gauge anomaly, see equation (23) of arXiv:1401.5084.

          Equations
          Instances For
            @[simp]
            theorem FTheory.SU5.TenQuanta.anomalyCoefficent_of_map {๐“ฉ ๐“ฉ1 : Type} [CommRing ๐“ฉ] [CommRing ๐“ฉ1] (f : ๐“ฉ โ†’+* ๐“ฉ1) (F : TenQuanta ๐“ฉ) :
            anomalyCoefficent (Multiset.map (fun (y : ๐“ฉ ร— โ„ค ร— โ„ค) => (f y.1, y.2)) F) = (f.prodMap f) F.anomalyCoefficent

            toChargesExpand #

            def FTheory.SU5.TenQuanta.ofChargesExpand {๐“ฉ : Type} [DecidableEq ๐“ฉ] (c : Finset ๐“ฉ) :
            Multiset (TenQuanta ๐“ฉ)

            Given a finite set of charges c the TenQuanta with fluxes {(1, 0), (1, 0), (1, 0)} and {(1, 1), (1, -1), (1, 0)} and finite set of charges equal to c.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              theorem FTheory.SU5.TenQuanta.toFluxesFive_of_mem_ofChargesExpand {๐“ฉ : Type} [DecidableEq ๐“ฉ] (c : Finset ๐“ฉ) {x : TenQuanta ๐“ฉ} (h : x โˆˆ ofChargesExpand c) :
              theorem FTheory.SU5.TenQuanta.toCharges_of_mem_ofChargesExpand {๐“ฉ : Type} [DecidableEq ๐“ฉ] (c : Finset ๐“ฉ) {x : TenQuanta ๐“ฉ} (h : x โˆˆ ofChargesExpand c) :
              theorem FTheory.SU5.TenQuanta.mem_ofChargesExpand_of_toCharges_toFluxesTen {๐“ฉ : Type} [DecidableEq ๐“ฉ] (c : Finset ๐“ฉ) {x : TenQuanta ๐“ฉ} (h : x.toCharges.toFinset = c) (h2 : x.toFluxesTen = {(1, 0), (1, 0), (1, 0)} โˆจ x.toFluxesTen = {(1, 1), (1, -1), (1, 0)}) :
              theorem FTheory.SU5.TenQuanta.mem_ofChargesExpand_of_noExotics_hasNoZero {๐“ฉ : Type} [DecidableEq ๐“ฉ] (F : TenQuanta ๐“ฉ) (c : Finset ๐“ฉ) (hc : F.toCharges.toFinset = c) (h1 : F.toFluxesTen.NoExotics) (h2 : F.toFluxesTen.HasNoZero) :
              โˆƒ y โˆˆ ofChargesExpand c, y.reduce = F.reduce