PhysLean Documentation

PhysLean.StringTheory.FTheory.SU5.Quanta.FiveQuanta

Quanta of 5-d representations #

The 5-bar representations of the SU(5)ร—U(1) carry the quantum numbers of their U(1) charges and their fluxes.

In this module we define the data structure for these quanta and properties thereof.

##ย Key definitions

Key theorems #

@[reducible, inline]
abbrev FTheory.SU5.FiveQuanta (๐“ฉ : Type := โ„ค) :

The quanta of 5-bar representations corresponding to a multiset of (q, M, N) for each partcile. (M, N) are defined in the FluxesFive module.

Equations
Instances For
    def FTheory.SU5.FiveQuanta.toFluxesFive {๐“ฉ : Type} (x : FiveQuanta ๐“ฉ) :

    The underlying FluxesFive from a FiveQuanta.

    Equations
    Instances For
      def FTheory.SU5.FiveQuanta.toCharges {๐“ฉ : Type} (x : FiveQuanta ๐“ฉ) :
      Multiset ๐“ฉ

      The underlying Multiset charges from a FiveQuanta.

      Equations
      Instances For

        Reduce #

        def FTheory.SU5.FiveQuanta.reduce {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : FiveQuanta ๐“ฉ) :
        FiveQuanta ๐“ฉ

        The reduce of FiveQuanta is a new FiveQuanta with all the fluxes corresponding to the same charge (i.e. represenation) added together.

        Equations
        Instances For
          theorem FTheory.SU5.FiveQuanta.reduce_nodup {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : FiveQuanta ๐“ฉ) :
          @[simp]
          theorem FTheory.SU5.FiveQuanta.reduce_dedup {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : FiveQuanta ๐“ฉ) :
          theorem FTheory.SU5.FiveQuanta.reduce_eq_val {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : FiveQuanta ๐“ฉ) :
          x.reduce = (Finset.image (fun (q5 : ๐“ฉ) => (q5, (Multiset.map (fun (y : ๐“ฉ ร— โ„ค ร— โ„ค) => y.2) (Multiset.filter (fun (f : ๐“ฉ ร— โ„ค ร— โ„ค) => f.1 = q5) x)).sum)) x.toCharges.toFinset).val
          theorem FTheory.SU5.FiveQuanta.mem_reduce_iff {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : FiveQuanta ๐“ฉ) (p : ๐“ฉ ร— โ„ค ร— โ„ค) :
          p โˆˆ x.reduce โ†” p.1 โˆˆ x.toCharges โˆง p.2 = (Multiset.map (fun (y : ๐“ฉ ร— โ„ค ร— โ„ค) => y.2) (Multiset.filter (fun (f : ๐“ฉ ร— โ„ค ร— โ„ค) => f.1 = p.1) x)).sum
          theorem FTheory.SU5.FiveQuanta.reduce_filter {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : FiveQuanta ๐“ฉ) (q : ๐“ฉ) (h : q โˆˆ x.toCharges) :
          Multiset.filter (fun (f : ๐“ฉ ร— โ„ค ร— โ„ค) => f.1 = q) x.reduce = {(q, (Multiset.map (fun (y : ๐“ฉ ร— โ„ค ร— โ„ค) => y.2) (Multiset.filter (fun (f : ๐“ฉ ร— โ„ค ร— โ„ค) => f.1 = q) x)).sum)}
          @[simp]
          theorem FTheory.SU5.FiveQuanta.reduce_reduce {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : FiveQuanta ๐“ฉ) :
          theorem FTheory.SU5.FiveQuanta.reduce_sum_eq_sum_toCharges {๐“ฉ : Type} [DecidableEq ๐“ฉ] {M : Type u_1} [AddCommMonoid M] (x : FiveQuanta ๐“ฉ) (f : ๐“ฉ โ†’ โ„ค ร— โ„ค โ†’+ M) :
          (Multiset.map (fun (x : ๐“ฉ ร— โ„ค ร— โ„ค) => match x with | (q5, x) => (f q5) x) x.reduce).sum = (Multiset.map (fun (x : ๐“ฉ ร— โ„ค ร— โ„ค) => match x with | (q5, x) => (f q5) x) x).sum
          theorem FTheory.SU5.FiveQuanta.reduce_eq_self_of_ofCharges_nodup {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : FiveQuanta ๐“ฉ) (h : x.toCharges.Nodup) :
          x.reduce = x

          Anomaly cancellation #

          def FTheory.SU5.FiveQuanta.anomalyCoefficent {๐“ฉ : Type} [CommRing ๐“ฉ] (F : FiveQuanta ๐“ฉ) :
          ๐“ฉ ร— ๐“ฉ

          The anomaly coefficent of a FiveQuanta is given by the pair of integers: (โˆ‘แตข qแตข Nแตข, โˆ‘แตข qแตขยฒ Nแตข).

          The first components is for the mixed U(1)-MSSM, see equation (22) of arXiv:1401.5084. The second component is for the mixed U(1)Y-U(1)-U(1) gauge anomaly, see equation (23) of arXiv:1401.5084.

          Equations
          Instances For
            @[simp]
            theorem FTheory.SU5.FiveQuanta.anomalyCoefficent_of_map {๐“ฉ ๐“ฉ1 : Type} [CommRing ๐“ฉ] [CommRing ๐“ฉ1] (f : ๐“ฉ โ†’+* ๐“ฉ1) (F : FiveQuanta ๐“ฉ) :
            anomalyCoefficent (Multiset.map (fun (y : ๐“ฉ ร— โ„ค ร— โ„ค) => (f y.1, y.2)) F) = (f.prodMap f) F.anomalyCoefficent

            ofChargesExpand #

            def FTheory.SU5.FiveQuanta.ofChargesExpand {๐“ฉ : Type} [DecidableEq ๐“ฉ] (c : Finset ๐“ฉ) :
            Multiset (FiveQuanta ๐“ฉ)

            Given a finite set of charges c the FiveQuanta with fluxes {(1, -1), (1, -1), (1, -1), (0, 1), (0, 1), (0, 1)} and finite set of charges equal to c.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              theorem FTheory.SU5.FiveQuanta.toFluxesFive_of_mem_ofChargesExpand {๐“ฉ : Type} [DecidableEq ๐“ฉ] (c : Finset ๐“ฉ) {x : FiveQuanta ๐“ฉ} (h : x โˆˆ ofChargesExpand c) :
              x.toFluxesFive = {(1, -1), (1, -1), (1, -1), (0, 1), (0, 1), (0, 1)}
              theorem FTheory.SU5.FiveQuanta.toCharges_of_mem_ofChargesExpand {๐“ฉ : Type} [DecidableEq ๐“ฉ] (c : Finset ๐“ฉ) {x : FiveQuanta ๐“ฉ} (h : x โˆˆ ofChargesExpand c) :
              theorem FTheory.SU5.FiveQuanta.mem_ofChargesExpand_of_toCharges_toFluxesFive {๐“ฉ : Type} [DecidableEq ๐“ฉ] (c : Finset ๐“ฉ) {x : FiveQuanta ๐“ฉ} (h : x.toCharges.toFinset = c) (h2 : x.toFluxesFive = {(1, -1), (1, -1), (1, -1), (0, 1), (0, 1), (0, 1)}) :
              theorem FTheory.SU5.FiveQuanta.mem_ofChargesExpand_iff {๐“ฉ : Type} [DecidableEq ๐“ฉ] (c : Finset ๐“ฉ) {x : FiveQuanta ๐“ฉ} :
              theorem FTheory.SU5.FiveQuanta.eq_sum_filter_of_mem_ofChargesExpand {๐“ฉ : Type} [DecidableEq ๐“ฉ] (c : Finset ๐“ฉ) (F : FiveQuanta ๐“ฉ) (h : F โˆˆ ofChargesExpand c) :
              F = Multiset.filter (fun (x : ๐“ฉ ร— โ„ค ร— โ„ค) => x.2 = (1, -1)) F + Multiset.filter (fun (x : ๐“ฉ ร— โ„ค ร— โ„ค) => x.2 = (0, 1)) F
              theorem FTheory.SU5.FiveQuanta.mem_ofChargesExpand_of_noExotics_hasNoZero {๐“ฉ : Type} [DecidableEq ๐“ฉ] (F : FiveQuanta ๐“ฉ) (c : Finset ๐“ฉ) (hc : F.toCharges.toFinset = c) (h1 : F.toFluxesFive.NoExotics) (h2 : F.toFluxesFive.HasNoZero) :
              โˆƒ y โˆˆ ofChargesExpand c, y.reduce = F.reduce
              theorem FTheory.SU5.FiveQuanta.exists_charges_of_mem_ofChargesExpand {๐“ฉ : Type} [DecidableEq ๐“ฉ] (c : Finset ๐“ฉ) (F : FiveQuanta ๐“ฉ) (h : F โˆˆ ofChargesExpand c) :
              โˆƒ (q1 : ๐“ฉ) (q2 : ๐“ฉ) (q3 : ๐“ฉ) (q4 : ๐“ฉ) (q5 : ๐“ฉ) (q6 : ๐“ฉ), F = {(q1, 1, -1), (q2, 1, -1), (q3, 1, -1), (q4, 0, 1), (q5, 0, 1), (q6, 0, 1)}
              theorem FTheory.SU5.FiveQuanta.exists_charges_le_of_mem_ofChargesExpand (c : Finset โ„ค) (F : FiveQuanta) (h : F โˆˆ ofChargesExpand c) :
              โˆƒ (q1 : โ„ค) (q2 : โ„ค) (q3 : โ„ค) (q4 : โ„ค) (q5 : โ„ค) (q6 : โ„ค), F = {(q1, 1, -1), (q2, 1, -1), (q3, 1, -1), (q4, 0, 1), (q5, 0, 1), (q6, 0, 1)} โˆง q1 โ‰ค q2 โˆง q2 โ‰ค q3 โˆง q4 โ‰ค q5 โˆง q5 โ‰ค q6