PhysLean Documentation

PhysLean.StringTheory.FTheory.SU5.Quanta.FiveQuanta

Quanta of 5-d representations #

i. Overview #

The 5-bar representations of the SU(5)ร—U(1) carry the quantum numbers of their U(1) charges and their fluxes.

In this module we define the data structure for these quanta and properties thereof.

ii. Key results #

iii. Table of contents #

iv. References #

A reference for the anomaly cancellation conditions is arXiv:1401.5084.

A. The definition of FiveQuanta #

@[reducible, inline]
abbrev FTheory.SU5.FiveQuanta (๐“ฉ : Type := โ„ค) :

The quanta of 5-bar representations corresponding to a multiset of (q, M, N) for each particle. (M, N) are defined in the FluxesFive module.

Equations
Instances For

    A.1. The map to underlying fluxes #

    def FTheory.SU5.FiveQuanta.toFluxesFive {๐“ฉ : Type} (x : FiveQuanta ๐“ฉ) :

    The underlying FluxesFive from a FiveQuanta.

    Equations
    Instances For

      A.2. The map to underlying charges #

      def FTheory.SU5.FiveQuanta.toCharges {๐“ฉ : Type} (x : FiveQuanta ๐“ฉ) :
      Multiset ๐“ฉ

      The underlying Multiset charges from a FiveQuanta.

      Equations
      Instances For

        A.3. The map from charges to fluxes #

        def FTheory.SU5.FiveQuanta.toChargeMap {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : FiveQuanta ๐“ฉ) :
        ๐“ฉ โ†’ Fluxes

        The map which takes a charge to the overall flux it corresponds to in a FiveQuanta.

        Equations
        Instances For
          theorem FTheory.SU5.FiveQuanta.toChargeMap_of_not_mem {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : FiveQuanta ๐“ฉ) {z : ๐“ฉ} (h : z โˆ‰ x.toCharges) :

          B. The reduction of a FiveQuanta #

          def FTheory.SU5.FiveQuanta.reduce {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : FiveQuanta ๐“ฉ) :
          FiveQuanta ๐“ฉ

          The reduce of FiveQuanta is a new FiveQuanta with all the fluxes corresponding to the same charge (i.e. representation) added together.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            B.1. The reduced FiveQuanta has no duplicate elements #

            theorem FTheory.SU5.FiveQuanta.reduce_nodup {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : FiveQuanta ๐“ฉ) :
            @[simp]
            theorem FTheory.SU5.FiveQuanta.reduce_dedup {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : FiveQuanta ๐“ฉ) :

            B.2. The underlying charges of the reduced FiveQuanta are the deduped charges #

            B.3. Membership condition on the reduced FiveQuanta #

            theorem FTheory.SU5.FiveQuanta.mem_reduce_iff {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : FiveQuanta ๐“ฉ) (p : ๐“ฉ ร— Fluxes) :
            p โˆˆ x.reduce โ†” p.1 โˆˆ x.toCharges โˆง p.2 = (Multiset.map (fun (y : ๐“ฉ ร— Fluxes) => y.2) (Multiset.filter (fun (f : ๐“ฉ ร— Fluxes) => f.1 = p.1) x)).sum

            B.4. Filter of the reduced FiveQuanta by a charge #

            theorem FTheory.SU5.FiveQuanta.reduce_filter {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : FiveQuanta ๐“ฉ) (q : ๐“ฉ) (h : q โˆˆ x.toCharges) :
            Multiset.filter (fun (f : ๐“ฉ ร— Fluxes) => f.1 = q) x.reduce = {(q, (Multiset.map (fun (y : ๐“ฉ ร— Fluxes) => y.2) (Multiset.filter (fun (f : ๐“ฉ ร— Fluxes) => f.1 = q) x)).sum)}

            B.5. The reduction is idempotent #

            @[simp]
            theorem FTheory.SU5.FiveQuanta.reduce_reduce {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : FiveQuanta ๐“ฉ) :

            B.6. Preservation of certain sums under reduction #

            theorem FTheory.SU5.FiveQuanta.reduce_sum_eq_sum_toCharges {๐“ฉ : Type} [DecidableEq ๐“ฉ] {M : Type u_1} [AddCommMonoid M] (x : FiveQuanta ๐“ฉ) (f : ๐“ฉ โ†’ Fluxes โ†’+ M) :
            (Multiset.map (fun (x : ๐“ฉ ร— Fluxes) => match x with | (q5, x) => (f q5) x) x.reduce).sum = (Multiset.map (fun (x : ๐“ฉ ร— Fluxes) => match x with | (q5, x) => (f q5) x) x).sum

            B.7. Reduction does nothing if no duplicate charges #

            theorem FTheory.SU5.FiveQuanta.reduce_eq_self_of_ofCharges_nodup {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : FiveQuanta ๐“ฉ) (h : x.toCharges.Nodup) :
            x.reduce = x

            B.8. The charge map is preserved by reduction #

            B.9. A fluxes in the reduced FiveQuanta is a sum of fluxes in the original FiveQuanta #

            B.10. No exotics condition on the reduced FiveQuanta #

            B.10.1. Number of chiral L #

            B.10.2. Number of anti-chiral L #

            B.10.3. Number of chiral D #

            B.10.4. Number of anti-chiral D #

            B.10.5. The NoExotics condition on the reduced FiveQuanta #

            B.11. Reduce member of FluxesFive.elemsNoExotics #

            C. Decomposition of a FiveQuanta into basic fluxes #

            C.1. Decomposition of fluxes #

            The decomposition of a flux into โŸจ1, -1โŸฉ and โŸจ0, 1โŸฉ.

            Equations
            Instances For

              C.2. Decomposition of a FiveQuanta (with no exotics) #

              def FTheory.SU5.FiveQuanta.decompose {๐“ฉ : Type} (x : FiveQuanta ๐“ฉ) :
              FiveQuanta ๐“ฉ

              The decomposition of a FiveQuanta into a FiveQuanta which has the same reduce by has fluxes โŸจ1, -1โŸฉ and โŸจ0,1โŸฉ only.

              Equations
              Instances For

                C.2.1. Decomposition distributes over addition #

                theorem FTheory.SU5.FiveQuanta.decompose_add {๐“ฉ : Type} (x y : FiveQuanta ๐“ฉ) :

                C.2.2. Decomposition commutes with filtering charges #

                theorem FTheory.SU5.FiveQuanta.decompose_filter_charge {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : FiveQuanta ๐“ฉ) (q : ๐“ฉ) :
                Multiset.filter (fun (p : ๐“ฉ ร— Fluxes) => p.1 = q) x.decompose = decompose (Multiset.filter (fun (p : ๐“ฉ ร— Fluxes) => p.1 = q) x)

                C.2.3. Decomposition preserves the charge map #

                C.2.4. Decomposition preserves the charges #

                C.2.5. Decomposition preserves the reduction #

                C.2.6. Fluxes of the decomposition of a FiveQuanta #

                theorem FTheory.SU5.FiveQuanta.decompose_toFluxesFive {๐“ฉ : Type} (x : FiveQuanta ๐“ฉ) (hx : x.toFluxesFive โˆˆ FluxesFive.elemsNoExotics) :
                x.decompose.toFluxesFive = {{ M := 1, N := -1 }, { M := 1, N := -1 }, { M := 1, N := -1 }, { M := 0, N := 1 }, { M := 0, N := 1 }, { M := 0, N := 1 }}

                D. Lifting charges to FiveQuanta #

                D.1. liftCharge c: multiset of five-quanta for a finite set of charges c with no exotics #

                This is an efficient definition, we will later show that it gives the correct answer

                def FTheory.SU5.FiveQuanta.liftCharge {๐“ฉ : Type} [DecidableEq ๐“ฉ] (c : Finset ๐“ฉ) :
                Multiset (FiveQuanta ๐“ฉ)

                Given a finite set of charges c the FiveQuanta which do not have exotics, duplicate charges or zero fluxes, which map down to c.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For

                  D.2. FiveQuanta in liftCharge c have a finite set of charges c #

                  theorem FTheory.SU5.FiveQuanta.toCharges_toFinset_of_mem_liftCharge {๐“ฉ : Type} [DecidableEq ๐“ฉ] (c : Finset ๐“ฉ) {x : FiveQuanta ๐“ฉ} (h : x โˆˆ liftCharge c) :

                  D.3. FiveQuanta in liftCharge c have no duplicate charges #

                  theorem FTheory.SU5.FiveQuanta.toCharges_nodup_of_mem_liftCharge {๐“ฉ : Type} [DecidableEq ๐“ฉ] (c : Finset ๐“ฉ) {x : FiveQuanta ๐“ฉ} (h : x โˆˆ liftCharge c) :

                  D.4. Membership in liftCharge c iff is reduction of FiveQuanta with given fluxes #

                  theorem FTheory.SU5.FiveQuanta.exists_toCharges_toFluxesFive_of_mem_liftCharge {๐“ฉ : Type} [DecidableEq ๐“ฉ] (c : Finset ๐“ฉ) {x : FiveQuanta ๐“ฉ} (h : x โˆˆ liftCharge c) :
                  โˆƒ (a : FiveQuanta ๐“ฉ), a.reduce = x โˆง a.toCharges.toFinset = c โˆง a.toFluxesFive = {{ M := 1, N := -1 }, { M := 1, N := -1 }, { M := 1, N := -1 }, { M := 0, N := 1 }, { M := 0, N := 1 }, { M := 0, N := 1 }}
                  theorem FTheory.SU5.FiveQuanta.mem_liftCharge_of_exists_toCharges_toFluxesFive {๐“ฉ : Type} [DecidableEq ๐“ฉ] (c : Finset ๐“ฉ) {x : FiveQuanta ๐“ฉ} (h : โˆƒ (a : FiveQuanta ๐“ฉ), a.reduce = x โˆง a.toCharges.toFinset = c โˆง a.toFluxesFive = {{ M := 1, N := -1 }, { M := 1, N := -1 }, { M := 1, N := -1 }, { M := 0, N := 1 }, { M := 0, N := 1 }, { M := 0, N := 1 }}) :
                  theorem FTheory.SU5.FiveQuanta.mem_liftCharge_iff_exists {๐“ฉ : Type} [DecidableEq ๐“ฉ] (c : Finset ๐“ฉ) {x : FiveQuanta ๐“ฉ} :
                  x โˆˆ liftCharge c โ†” โˆƒ (a : FiveQuanta ๐“ฉ), a.reduce = x โˆง a.toCharges.toFinset = c โˆง a.toFluxesFive = {{ M := 1, N := -1 }, { M := 1, N := -1 }, { M := 1, N := -1 }, { M := 0, N := 1 }, { M := 0, N := 1 }, { M := 0, N := 1 }}

                  D.5. FiveQuanta in liftCharge c do not have zero fluxes #

                  theorem FTheory.SU5.FiveQuanta.hasNoZero_of_mem_liftCharge {๐“ฉ : Type} [DecidableEq ๐“ฉ] (c : Finset ๐“ฉ) {x : FiveQuanta ๐“ฉ} (h : x โˆˆ liftCharge c) :

                  D.6. FiveQuanta in liftCharge c have no exotics #

                  theorem FTheory.SU5.FiveQuanta.noExotics_of_mem_liftCharge {๐“ฉ : Type} [DecidableEq ๐“ฉ] (c : Finset ๐“ฉ) (F : FiveQuanta ๐“ฉ) (h : F โˆˆ liftCharge c) :

                  D.7. Membership in liftCharge c iff have no exotics, no zero fluxes, and charges c #

                  theorem FTheory.SU5.FiveQuanta.mem_liftCharge_of_mem_noExotics_hasNoZero {๐“ฉ : Type} [DecidableEq ๐“ฉ] (c : Finset ๐“ฉ) {x : FiveQuanta ๐“ฉ} (h1 : x.toFluxesFive.NoExotics) (h2 : x.toFluxesFive.HasNoZero) (h3 : x.toCharges.toFinset = c) (h4 : x.toCharges.Nodup) :

                  D.8. liftCharge c is preserved under a map if reduced #

                  theorem FTheory.SU5.FiveQuanta.map_liftCharge {๐“ฉ ๐“ฉ1 : Type} [DecidableEq ๐“ฉ] [DecidableEq ๐“ฉ1] [CommRing ๐“ฉ] [CommRing ๐“ฉ1] (f : ๐“ฉ โ†’+* ๐“ฉ1) (c : Finset ๐“ฉ) (F : FiveQuanta ๐“ฉ) (h : F โˆˆ liftCharge c) :
                  reduce (Multiset.map (fun (y : ๐“ฉ ร— Fluxes) => (f y.1, y.2)) F) โˆˆ liftCharge (Finset.image (โ‡‘f) c)

                  E. Anomaly cancellation coefficients #

                  E.1. Anomaly coefficients of a FiveQuanta #

                  def FTheory.SU5.FiveQuanta.anomalyCoefficient {๐“ฉ : Type} [CommRing ๐“ฉ] (F : FiveQuanta ๐“ฉ) :
                  ๐“ฉ ร— ๐“ฉ

                  The anomaly coefficient of a FiveQuanta is given by the pair of integers: (โˆ‘แตข qแตข Nแตข, โˆ‘แตข qแตขยฒ Nแตข).

                  The first components is for the mixed U(1)-MSSM, see equation (22) of arXiv:1401.5084. The second component is for the mixed U(1)Y-U(1)-U(1) gauge anomaly, see equation (23) of arXiv:1401.5084.

                  Equations
                  Instances For

                    E.2. Anomaly coefficients under a map #

                    @[simp]
                    theorem FTheory.SU5.FiveQuanta.anomalyCoefficient_of_map {๐“ฉ ๐“ฉ1 : Type} [CommRing ๐“ฉ] [CommRing ๐“ฉ1] (f : ๐“ฉ โ†’+* ๐“ฉ1) (F : FiveQuanta ๐“ฉ) :
                    anomalyCoefficient (Multiset.map (fun (y : ๐“ฉ ร— Fluxes) => (f y.1, y.2)) F) = (f.prodMap f) F.anomalyCoefficient

                    E.3. Anomaly coefficients is preserved under reduce #