Distributions on SpaceTime #
i. Overview #
In this module we give the basic properties of distributions on SpaceTime d,
and derivatives thereof.
ii. Key results #
SpaceTime.constD d m: the constant distribution onSpaceTime dwith valuem.SpaceTime.timeSliceD: the time slice of a distribution onSpaceTime dto a distribution onTime × Space d.SpaceTime.derivD μ f: the derivative of a distributionf : (SpaceTime d) →d[ℝ] Min directionμ : Fin 1 ⊕ Fin d.
iii. Table of contents #
- A. The constant distribution on SpaceTime
- B. The time slice of a distribution on SpaceTime
- C. Derivatives of distributions
- C.1. Relationship between the time slice and derivatives
iv. References #
A. The constant distribution on SpaceTime #
noncomputable def
SpaceTime.constD
{M : Type}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
(d : ℕ)
(m : M)
:
The constant distribution from SpaceTime d to a module M associated with
m : M.
Equations
- SpaceTime.constD d m = Distribution.const ℝ (SpaceTime d) m
Instances For
B. The time slice of a distribution on SpaceTime #
noncomputable def
SpaceTime.timeSliceD
{M : Type}
{d : ℕ}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
:
The time slice of a distribution on SpaceTime d to form a distribution
on Time × Space d.
Equations
- One or more equations did not get rendered due to their size.
Instances For
C. Derivatives of distributions #
noncomputable def
SpaceTime.derivD
{M : Type}
{d : ℕ}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
(μ : Fin 1 ⊕ Fin d)
:
Given a distribution (function) f : Space d →d[ℝ] M the derivative
of f in direction μ.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
SpaceTime.derivD_apply
{M : Type}
{d : ℕ}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
(μ : Fin 1 ⊕ Fin d)
(f : (SpaceTime d)→d[ℝ] M)
(ε : SchwartzMap (SpaceTime d) ℝ)
:
C.1. Relationship between the time slice and derivatives #
theorem
SpaceTime.timeSliceD_derivD_inl
{M : Type}
{d : ℕ}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
(f : (SpaceTime d)→d[ℝ] M)
:
theorem
SpaceTime.timeSliceD_symm_derivD_inl
{M : Type}
{d : ℕ}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
(f : (Time × Space d)→d[ℝ] M)
:
theorem
SpaceTime.timeSliceD_derivD_inr
{M : Type}
{d : ℕ}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
(i : Fin d)
(f : (SpaceTime d)→d[ℝ] M)
:
theorem
SpaceTime.timeSliceD_symm_derivD_inr
{M : Type}
{d : ℕ}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
(i : Fin d)
(f : (Time × Space d)→d[ℝ] M)
: